You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
503 lines
14 KiB
503 lines
14 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.cpp |
|
* Core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include <drivers/drv_hrt.h> |
|
|
|
Ekf::Ekf(): |
|
_control_status{}, |
|
_filter_initialised(false), |
|
_earth_rate_initialised(false), |
|
_fuse_height(false), |
|
_fuse_pos(false), |
|
_fuse_hor_vel(false), |
|
_fuse_vert_vel(false), |
|
_time_last_fake_gps(0), |
|
_time_last_pos_fuse(0), |
|
_time_last_vel_fuse(0), |
|
_time_last_hgt_fuse(0), |
|
_time_last_of_fuse(0), |
|
_vel_pos_innov{}, |
|
_mag_innov{}, |
|
_heading_innov{}, |
|
_vel_pos_innov_var{}, |
|
_mag_innov_var{}, |
|
_heading_innov_var{} |
|
{ |
|
_earth_rate_NED.setZero(); |
|
_R_prev = matrix::Dcm<float>(); |
|
_delta_angle_corr.setZero(); |
|
_delta_vel_corr.setZero(); |
|
_vel_corr.setZero(); |
|
_last_known_posNE.setZero(); |
|
} |
|
|
|
|
|
Ekf::~Ekf() |
|
{ |
|
|
|
|
|
} |
|
bool Ekf::init(uint64_t timestamp) |
|
{ |
|
bool ret = initialise_interface(timestamp); |
|
_state.ang_error.setZero(); |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.gyro_bias.setZero(); |
|
_state.gyro_scale(0) = 1.0f; |
|
_state.gyro_scale(1) = 1.0f; |
|
_state.gyro_scale(2) = 1.0f; |
|
_state.accel_z_bias = 0.0f; |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
_state.quat_nominal.setZero(); |
|
_state.quat_nominal(0) = 1.0f; |
|
|
|
_output_new.vel.setZero(); |
|
_output_new.pos.setZero(); |
|
_output_new.quat_nominal = matrix::Quaternion<float>(); |
|
|
|
|
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_imu_down_sampled.time_us = timestamp; |
|
|
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = 0.0f; |
|
_q_down_sampled(2) = 0.0f; |
|
_q_down_sampled(3) = 0.0f; |
|
|
|
_imu_updated = false; |
|
_NED_origin_initialised = false; |
|
_gps_speed_valid = false; |
|
_mag_healthy = false; |
|
return ret; |
|
} |
|
|
|
bool Ekf::update() |
|
{ |
|
bool ret = false; // indicates if there has been an update |
|
|
|
if (!_filter_initialised) { |
|
_filter_initialised = initialiseFilter(); |
|
|
|
if (!_filter_initialised) { |
|
return false; |
|
} |
|
} |
|
//printStates(); |
|
//printStatesFast(); |
|
// prediction |
|
if (_imu_updated) { |
|
ret = true; |
|
predictState(); |
|
predictCovariance(); |
|
} |
|
|
|
// control logic |
|
controlFusionModes(); |
|
|
|
// measurement updates |
|
|
|
// Fuse magnetometer data using the selected fuson method and only if angular alignment is complete |
|
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { |
|
if (_control_status.flags.mag_3D && _control_status.flags.angle_align) { |
|
fuseMag(); |
|
if (_control_status.flags.mag_dec) { |
|
// TODO need to fuse synthetic declination measurements if there is no GPS or equivalent aiding |
|
// otherwise heading will slowly drift |
|
} |
|
} else if (_control_status.flags.mag_hdg && _control_status.flags.angle_align) { |
|
fuseHeading(); |
|
} |
|
} |
|
|
|
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { |
|
_fuse_height = true; |
|
} |
|
|
|
// If we are using GPs aiding and data has fallen behind the fusion time horizon then fuse it |
|
// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift |
|
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz |
|
if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed) && _control_status.flags.gps) { |
|
_fuse_pos = true; |
|
_fuse_vert_vel = true; |
|
_fuse_hor_vel = true; |
|
} else if (!_control_status.flags.gps && !_control_status.flags.opt_flow && ((_time_last_imu - _time_last_fake_gps > 2e5) || _fuse_height)) { |
|
_fuse_pos = true; |
|
_gps_sample_delayed.pos(0) = _last_known_posNE(0); |
|
_gps_sample_delayed.pos(1) = _last_known_posNE(1); |
|
_time_last_fake_gps = _time_last_imu; |
|
} |
|
|
|
if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) { |
|
fuseVelPosHeight(); |
|
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false; |
|
} |
|
|
|
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) { |
|
fuseRange(); |
|
} |
|
|
|
if (_airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed)) { |
|
fuseAirspeed(); |
|
} |
|
|
|
calculateOutputStates(); |
|
|
|
return ret; |
|
} |
|
|
|
bool Ekf::initialiseFilter(void) |
|
{ |
|
_state.ang_error.setZero(); |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.gyro_bias.setZero(); |
|
_state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f; |
|
_state.accel_z_bias = 0.0f; |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
|
|
// get initial roll and pitch estimate from accel vector, assuming vehicle is static |
|
Vector3f accel_init = _imu_down_sampled.delta_vel / _imu_down_sampled.delta_vel_dt; |
|
|
|
float pitch = 0.0f; |
|
float roll = 0.0f; |
|
|
|
if (accel_init.norm() > 0.001f) { |
|
accel_init.normalize(); |
|
|
|
pitch = asinf(accel_init(0)); |
|
roll = -asinf(accel_init(1) / cosf(pitch)); |
|
} |
|
|
|
matrix::Euler<float> euler_init(roll, pitch, 0.0f); |
|
|
|
// Get the latest magnetic field measurement. |
|
// If we don't have a measurement then we cannot initialise the filter |
|
magSample mag_init = _mag_buffer.get_newest(); |
|
|
|
if (mag_init.time_us == 0) { |
|
return false; |
|
} |
|
|
|
// rotate magnetic field into earth frame assuming zero yaw and estimate yaw angle assuming zero declination |
|
// TODO use declination if available |
|
matrix::Dcm<float> R_to_earth_zeroyaw(euler_init); |
|
Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init.mag; |
|
float declination = 0.0f; |
|
euler_init(2) = declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0)); |
|
|
|
// calculate initial quaternion states |
|
_state.quat_nominal = Quaternion(euler_init); |
|
_output_new.quat_nominal = _state.quat_nominal; |
|
|
|
// TODO replace this with a conditional test based on fitered angle error states. |
|
_control_status.flags.angle_align = true; |
|
|
|
// calculate initial earth magnetic field states |
|
matrix::Dcm<float> R_to_earth(euler_init); |
|
_state.mag_I = R_to_earth * mag_init.mag; |
|
|
|
resetVelocity(); |
|
resetPosition(); |
|
|
|
// initialize vertical position with newest baro measurement |
|
baroSample baro_init = _baro_buffer.get_newest(); |
|
|
|
if (baro_init.time_us == 0) { |
|
return false; |
|
} |
|
|
|
_state.pos(2) = -baro_init.hgt; |
|
_output_new.pos(2) = -baro_init.hgt; |
|
|
|
initialiseCovariance(); |
|
|
|
return true; |
|
} |
|
|
|
void Ekf::predictState() |
|
{ |
|
if (!_earth_rate_initialised) { |
|
if (_NED_origin_initialised) { |
|
calcEarthRateNED(_earth_rate_NED, _pos_ref.lat_rad); |
|
_earth_rate_initialised = true; |
|
} |
|
} |
|
|
|
// attitude error state prediciton |
|
matrix::Dcm<float> R_to_earth(_state.quat_nominal); // transformation matrix from body to world frame |
|
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _R_prev * _earth_rate_NED * |
|
_imu_sample_delayed.delta_ang_dt; |
|
Quaternion dq; // delta quaternion since last update |
|
dq.from_axis_angle(corrected_delta_ang); |
|
_state.quat_nominal = dq * _state.quat_nominal; |
|
_state.quat_nominal.normalize(); |
|
|
|
_R_prev = R_to_earth.transpose(); |
|
|
|
Vector3f vel_last = _state.vel; |
|
|
|
// predict velocity states |
|
_state.vel += R_to_earth * _imu_sample_delayed.delta_vel; |
|
_state.vel(2) += 9.81f * _imu_sample_delayed.delta_vel_dt; |
|
|
|
// predict position states via trapezoidal integration of velocity |
|
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f; |
|
|
|
constrainStates(); |
|
} |
|
|
|
|
|
bool Ekf::collect_imu(imuSample &imu) |
|
{ |
|
|
|
imu.delta_ang(0) = imu.delta_ang(0) * _state.gyro_scale(0); |
|
imu.delta_ang(1) = imu.delta_ang(1) * _state.gyro_scale(1); |
|
imu.delta_ang(2) = imu.delta_ang(2) * _state.gyro_scale(2); |
|
|
|
imu.delta_ang -= _state.gyro_bias * imu.delta_ang_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f); |
|
imu.delta_vel(2) -= _state.accel_z_bias * imu.delta_vel_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f);; |
|
|
|
// store the new sample for the complementary filter prediciton |
|
_imu_sample_new = { |
|
delta_ang : imu.delta_ang, |
|
delta_vel : imu.delta_vel, |
|
delta_ang_dt : imu.delta_ang_dt, |
|
delta_vel_dt : imu.delta_vel_dt, |
|
time_us : imu.time_us |
|
}; |
|
|
|
_imu_down_sampled.delta_ang_dt += imu.delta_ang_dt; |
|
_imu_down_sampled.delta_vel_dt += imu.delta_vel_dt; |
|
|
|
|
|
Quaternion delta_q; |
|
delta_q.rotate(imu.delta_ang); |
|
_q_down_sampled = _q_down_sampled * delta_q; |
|
_q_down_sampled.normalize(); |
|
|
|
matrix::Dcm<float> delta_R(delta_q.inversed()); |
|
_imu_down_sampled.delta_vel = delta_R * _imu_down_sampled.delta_vel; |
|
_imu_down_sampled.delta_vel += imu.delta_vel; |
|
|
|
if ((_dt_imu_avg * _imu_ticks >= (float)(FILTER_UPDATE_PERRIOD_MS) / 1000) || |
|
_dt_imu_avg * _imu_ticks >= 0.02f){ |
|
imu = { |
|
delta_ang : _q_down_sampled.to_axis_angle(), |
|
delta_vel : _imu_down_sampled.delta_vel, |
|
delta_ang_dt : _imu_down_sampled.delta_ang_dt, |
|
delta_vel_dt : _imu_down_sampled.delta_vel_dt, |
|
time_us : imu.time_us |
|
}; |
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = _q_down_sampled(2) = _q_down_sampled(3) = 0.0f; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void Ekf::calculateOutputStates() |
|
{ |
|
imuSample imu_new = _imu_sample_new; |
|
Vector3f delta_angle; |
|
|
|
// Note: We do no not need to consider any bias or scale correction here |
|
// since the base class has already corrected the imu sample |
|
delta_angle(0) = imu_new.delta_ang(0); |
|
delta_angle(1) = imu_new.delta_ang(1); |
|
delta_angle(2) = imu_new.delta_ang(2); |
|
|
|
Vector3f delta_vel = imu_new.delta_vel; |
|
|
|
delta_angle += _delta_angle_corr; |
|
Quaternion dq; |
|
dq.from_axis_angle(delta_angle); |
|
|
|
_output_new.time_us = imu_new.time_us; |
|
_output_new.quat_nominal = dq * _output_new.quat_nominal; |
|
_output_new.quat_nominal.normalize(); |
|
|
|
matrix::Dcm<float> R_to_earth(_output_new.quat_nominal); |
|
|
|
Vector3f delta_vel_NED = R_to_earth * delta_vel + _delta_vel_corr; |
|
delta_vel_NED(2) += 9.81f * imu_new.delta_vel_dt; |
|
|
|
Vector3f vel_last = _output_new.vel; |
|
|
|
_output_new.vel += delta_vel_NED; |
|
|
|
_output_new.pos += (_output_new.vel + vel_last) * (imu_new.delta_vel_dt * 0.5f) + _vel_corr * imu_new.delta_vel_dt; |
|
|
|
if (_imu_updated) { |
|
_output_buffer.push(_output_new); |
|
_imu_updated = false; |
|
} |
|
|
|
_output_sample_delayed = _output_buffer.get_oldest(); |
|
|
|
Quaternion quat_inv = _state.quat_nominal.inversed(); |
|
Quaternion q_error = _output_sample_delayed.quat_nominal * quat_inv; |
|
q_error.normalize(); |
|
Vector3f delta_ang_error; |
|
|
|
float scalar; |
|
|
|
if (q_error(0) >= 0.0f) { |
|
scalar = -2.0f; |
|
|
|
} else { |
|
scalar = 2.0f; |
|
} |
|
|
|
delta_ang_error(0) = scalar * q_error(1); |
|
delta_ang_error(1) = scalar * q_error(2); |
|
delta_ang_error(2) = scalar * q_error(3); |
|
|
|
_delta_angle_corr = delta_ang_error * imu_new.delta_ang_dt; |
|
|
|
_delta_vel_corr = (_state.vel - _output_sample_delayed.vel) * imu_new.delta_vel_dt; |
|
|
|
_vel_corr = (_state.pos - _output_sample_delayed.pos); |
|
|
|
} |
|
|
|
|
|
void Ekf::fuseAirspeed() |
|
{ |
|
|
|
} |
|
|
|
void Ekf::fuseRange() |
|
{ |
|
|
|
} |
|
|
|
void Ekf::printStates() |
|
{ |
|
static int counter = 0; |
|
|
|
if (counter % 50 == 0) { |
|
printf("quaternion\n"); |
|
|
|
for (int i = 0; i < 4; i++) { |
|
printf("quat %i %.5f\n", i, (double)_state.quat_nominal(i)); |
|
} |
|
|
|
matrix::Euler<float> euler(_state.quat_nominal); |
|
printf("yaw pitch roll %.5f %.5f %.5f\n", (double)euler(2), (double)euler(1), (double)euler(0)); |
|
|
|
printf("vel\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("v %i %.5f\n", i, (double)_state.vel(i)); |
|
} |
|
|
|
printf("pos\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("p %i %.5f\n", i, (double)_state.pos(i)); |
|
} |
|
|
|
printf("gyro_scale\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("gs %i %.5f\n", i, (double)_state.gyro_scale(i)); |
|
} |
|
|
|
printf("mag earth\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("mI %i %.5f\n", i, (double)_state.mag_I(i)); |
|
} |
|
|
|
printf("mag bias\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("mB %i %.5f\n", i, (double)_state.mag_B(i)); |
|
} |
|
|
|
counter = 0; |
|
} |
|
|
|
counter++; |
|
|
|
} |
|
|
|
void Ekf::printStatesFast() |
|
{ |
|
static int counter_fast = 0; |
|
|
|
if (counter_fast % 50 == 0) { |
|
printf("quaternion\n"); |
|
|
|
for (int i = 0; i < 4; i++) { |
|
printf("quat %i %.5f\n", i, (double)_output_new.quat_nominal(i)); |
|
} |
|
|
|
printf("vel\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("v %i %.5f\n", i, (double)_output_new.vel(i)); |
|
} |
|
|
|
printf("pos\n"); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
printf("p %i %.5f\n", i, (double)_output_new.pos(i)); |
|
} |
|
|
|
counter_fast = 0; |
|
} |
|
|
|
counter_fast++; |
|
}
|
|
|