You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

529 lines
19 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.cpp
* Core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::init(uint64_t timestamp)
{
bool ret = initialise_interface(timestamp);
reset();
return ret;
}
void Ekf::reset()
{
_state.vel.setZero();
_state.pos.setZero();
_state.delta_ang_bias.setZero();
_state.delta_vel_bias.setZero();
_state.mag_I.setZero();
_state.mag_B.setZero();
_state.wind_vel.setZero();
_state.quat_nominal.setIdentity();
_output_new.vel.setZero();
_output_new.pos.setZero();
_output_new.quat_nominal.setIdentity();
initialiseCovariance();
_delta_angle_corr.setZero();
_imu_updated = false;
_NED_origin_initialised = false;
_gps_speed_valid = false;
_filter_initialised = false;
_terrain_initialised = false;
_sin_tilt_rng = sinf(_params.rng_sens_pitch);
_cos_tilt_rng = cosf(_params.rng_sens_pitch);
_control_status.value = 0;
_control_status_prev.value = 0;
_dt_ekf_avg = FILTER_UPDATE_PERIOD_S;
_fault_status.value = 0;
_innov_check_fail_status.value = 0;
_accel_magnitude_filt = 0.0f;
_ang_rate_magnitude_filt = 0.0f;
_prev_dvel_bias_var.zero();
}
bool Ekf::update()
{
bool updated = false;
if (!_filter_initialised) {
_filter_initialised = initialiseFilter();
if (!_filter_initialised) {
return false;
}
}
// Only run the filter if IMU data in the buffer has been updated
if (_imu_updated) {
const imuSample &imu_init = _imu_buffer.get_newest();
_accel_lpf.update(imu_init.delta_vel);
// perform state and covariance prediction for the main filter
predictState();
predictCovariance();
// control fusion of observation data
controlFusionModes();
// run a separate filter for terrain estimation
runTerrainEstimator();
updated = true;
}
// the output observer always runs
// Use full rate IMU data at the current time horizon
calculateOutputStates();
return updated;
}
bool Ekf::initialiseFilter()
{
// Keep accumulating measurements until we have a minimum of 10 samples for the required sensors
// Filter accel for tilt initialization
const imuSample &imu_init = _imu_buffer.get_newest();
if(_is_first_imu_sample){
_accel_lpf.reset(imu_init.delta_vel);
_is_first_imu_sample = false;
}
else
{
_accel_lpf.update(imu_init.delta_vel);
}
// Sum the magnetometer measurements
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
if(_mag_sample_delayed.time_us != 0)
{
_mag_counter ++;
// wait for all bad initial data to be flushed
if (_mag_counter <= uint8_t(_obs_buffer_length + 1)) {
_mag_lpf.reset(_mag_sample_delayed.mag);
} else {
_mag_lpf.update(_mag_sample_delayed.mag);
}
}
}
// accumulate enough height measurements to be confident in the quality of the data
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
if (_baro_sample_delayed.time_us != 0)
{
_baro_counter ++;
// wait for all bad initial data to be flushed
if (_baro_counter <= uint8_t(_obs_buffer_length + 1)) {
_baro_hgt_offset = _baro_sample_delayed.hgt;
} else if (_baro_counter > (uint8_t)(_obs_buffer_length + 1)) {
_baro_hgt_offset = 0.9f * _baro_hgt_offset + 0.1f * _baro_sample_delayed.hgt;
}
}
}
const bool not_enough_baro_samples_accumulated = _baro_counter <= 2u * _obs_buffer_length;
const bool not_enough_mag_samples_accumulated = _mag_counter <= 2u * _obs_buffer_length;
if (not_enough_baro_samples_accumulated || not_enough_mag_samples_accumulated) {
return false;
} else {
// we use baro height initially and switch to GPS/range/EV finder later when it passes checks.
setControlBaroHeight();
// reset variables that are shared with post alignment GPS checks
_gps_pos_deriv_filt(2) = 0.0f;
_gps_alt_ref = 0.0f;
if(!initialiseTilt()){
return false;
}
// calculate the initial magnetic field and yaw alignment
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState(), false, false);
// update the yaw angle variance using the variance of the measurement
if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
// using magnetic heading tuning parameter
increaseQuatYawErrVariance(sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)));
}
// try to initialise the terrain estimator
_terrain_initialised = initHagl();
// reset the essential fusion timeout counters
_time_last_hgt_fuse = _time_last_imu;
_time_last_hor_pos_fuse = _time_last_imu;
_time_last_delpos_fuse = _time_last_imu;
_time_last_hor_vel_fuse = _time_last_imu;
_time_last_hagl_fuse = _time_last_imu;
_time_last_of_fuse = _time_last_imu;
// reset the output predictor state history to match the EKF initial values
alignOutputFilter();
return true;
}
}
bool Ekf::initialiseTilt()
{
if (_accel_lpf.getState().norm() < 0.001f) {
return false;
}
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static
Vector3f gravity_in_body = _accel_lpf.getState();
gravity_in_body.normalize();
const float pitch = asinf(gravity_in_body(0));
const float roll = atan2f(-gravity_in_body(1), -gravity_in_body(2));
const Eulerf euler_init(roll, pitch, 0.0f);
_state.quat_nominal = Quatf(euler_init);
_R_to_earth = Dcmf(_state.quat_nominal);
return true;
}
void Ekf::predictState()
{
// apply imu bias corrections
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _state.delta_ang_bias;
const Vector3f corrected_delta_vel = _imu_sample_delayed.delta_vel - _state.delta_vel_bias;
// correct delta angles for earth rotation rate
corrected_delta_ang -= -_R_to_earth.transpose() * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt;
const Quatf dq(AxisAnglef{corrected_delta_ang});
// rotate the previous quaternion by the delta quaternion using a quaternion multiplication
_state.quat_nominal = _state.quat_nominal * dq;
// quaternions must be normalised whenever they are modified
_state.quat_nominal.normalize();
// save the previous value of velocity so we can use trapzoidal integration
const Vector3f vel_last = _state.vel;
_R_to_earth = Dcmf(_state.quat_nominal);
// Calculate an earth frame delta velocity
const Vector3f corrected_delta_vel_ef = _R_to_earth * corrected_delta_vel;
// calculate a filtered horizontal acceleration with a 1 sec time constant
// this are used for manoeuvre detection elsewhere
float alpha = 1.0f - _imu_sample_delayed.delta_vel_dt;
_accel_lpf_NE(0) = _accel_lpf_NE(0) * alpha + corrected_delta_vel_ef(0);
_accel_lpf_NE(1) = _accel_lpf_NE(1) * alpha + corrected_delta_vel_ef(1);
// calculate the increment in velocity using the current orientation
_state.vel += corrected_delta_vel_ef;
// compensate for acceleration due to gravity
_state.vel(2) += CONSTANTS_ONE_G * _imu_sample_delayed.delta_vel_dt;
// predict position states via trapezoidal integration of velocity
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
constrainStates();
// calculate an average filter update time
float input = 0.5f * (_imu_sample_delayed.delta_vel_dt + _imu_sample_delayed.delta_ang_dt);
// filter and limit input between -50% and +100% of nominal value
input = math::constrain(input, 0.5f * FILTER_UPDATE_PERIOD_S, 2.0f * FILTER_UPDATE_PERIOD_S);
_dt_ekf_avg = 0.99f * _dt_ekf_avg + 0.01f * input;
}
/*
* Implement a strapdown INS algorithm using the latest IMU data at the current time horizon.
* Buffer the INS states and calculate the difference with the EKF states at the delayed fusion time horizon.
* Calculate delta angle, delta velocity and velocity corrections from the differences and apply them at the
* current time horizon so that the INS states track the EKF states at the delayed fusion time horizon.
* The inspiration for using a complementary filter to correct for time delays in the EKF
* is based on the work by A Khosravian:
* “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements”
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
*/
void Ekf::calculateOutputStates()
{
// Use full rate IMU data at the current time horizon
const imuSample &imu = _newest_high_rate_imu_sample;
// correct delta angles for bias offsets
const float dt_scale_correction = _dt_imu_avg / _dt_ekf_avg;
// Apply corrections to the delta angle required to track the quaternion states at the EKF fusion time horizon
const Vector3f delta_angle{imu.delta_ang - _state.delta_ang_bias * dt_scale_correction + _delta_angle_corr};
// calculate a yaw change about the earth frame vertical
const float spin_del_ang_D = _R_to_earth_now(2, 0) * delta_angle(0) +
_R_to_earth_now(2, 1) * delta_angle(1) +
_R_to_earth_now(2, 2) * delta_angle(2);
_yaw_delta_ef += spin_del_ang_D;
// Calculate filtered yaw rate to be used by the magnetometer fusion type selection logic
// Note fixed coefficients are used to save operations. The exact time constant is not important.
_yaw_rate_lpf_ef = 0.95f * _yaw_rate_lpf_ef + 0.05f * spin_del_ang_D / imu.delta_ang_dt;
const Quatf dq(AxisAnglef{delta_angle});
// rotate the previous INS quaternion by the delta quaternions
_output_new.time_us = imu.time_us;
_output_new.quat_nominal = _output_new.quat_nominal * dq;
// the quaternions must always be normalised after modification
_output_new.quat_nominal.normalize();
// calculate the rotation matrix from body to earth frame
_R_to_earth_now = Dcmf(_output_new.quat_nominal);
// correct delta velocity for bias offsets
const Vector3f delta_vel{imu.delta_vel - _state.delta_vel_bias * dt_scale_correction};
// rotate the delta velocity to earth frame
Vector3f delta_vel_NED{_R_to_earth_now * delta_vel};
// correct for measured acceleration due to gravity
delta_vel_NED(2) += CONSTANTS_ONE_G * imu.delta_vel_dt;
// calculate the earth frame velocity derivatives
if (imu.delta_vel_dt > 1e-4f) {
_vel_deriv_ned = delta_vel_NED * (1.0f / imu.delta_vel_dt);
}
// save the previous velocity so we can use trapezoidal integration
const Vector3f vel_last{_output_new.vel};
// increment the INS velocity states by the measurement plus corrections
// do the same for vertical state used by alternative correction algorithm
_output_new.vel += delta_vel_NED;
_output_vert_new.vel_d += delta_vel_NED(2);
// use trapezoidal integration to calculate the INS position states
// do the same for vertical state used by alternative correction algorithm
const Vector3f delta_pos_NED = (_output_new.vel + vel_last) * (imu.delta_vel_dt * 0.5f);
_output_new.pos += delta_pos_NED;
_output_vert_new.vel_d_integ += delta_pos_NED(2);
// accumulate the time for each update
_output_vert_new.dt += imu.delta_vel_dt;
// correct velocity for IMU offset
if (imu.delta_ang_dt > 1e-4f) {
// calculate the average angular rate across the last IMU update
const Vector3f ang_rate = imu.delta_ang * (1.0f / imu.delta_ang_dt);
// calculate the velocity of the IMU relative to the body origin
const Vector3f vel_imu_rel_body = ang_rate % _params.imu_pos_body;
// rotate the relative velocity into earth frame
_vel_imu_rel_body_ned = _R_to_earth_now * vel_imu_rel_body;
}
// store the INS states in a ring buffer with the same length and time coordinates as the IMU data buffer
if (_imu_updated) {
_output_buffer.push(_output_new);
_output_vert_buffer.push(_output_vert_new);
// get the oldest INS state data from the ring buffer
// this data will be at the EKF fusion time horizon
_output_sample_delayed = _output_buffer.get_oldest();
_output_vert_delayed = _output_vert_buffer.get_oldest();
// calculate the quaternion delta between the INS and EKF quaternions at the EKF fusion time horizon
const Quatf q_error( (_state.quat_nominal.inversed() * _output_sample_delayed.quat_nominal).normalized() );
// convert the quaternion delta to a delta angle
float scalar;
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
const Vector3f delta_ang_error{scalar * q_error(1), scalar * q_error(2), scalar * q_error(3)};
// calculate a gain that provides tight tracking of the estimator attitude states and
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
const float time_delay = fmaxf((imu.time_us - _imu_sample_delayed.time_us) * 1e-6f, _dt_imu_avg);
const float att_gain = 0.5f * _dt_imu_avg / time_delay;
// calculate a corrrection to the delta angle
// that will cause the INS to track the EKF quaternions
_delta_angle_corr = delta_ang_error * att_gain;
// calculate velocity and position tracking errors
const Vector3f vel_err{_state.vel - _output_sample_delayed.vel};
const Vector3f pos_err{_state.pos - _output_sample_delayed.pos};
// collect magnitude tracking error for diagnostics
_output_tracking_error[0] = delta_ang_error.norm();
_output_tracking_error[1] = vel_err.norm();
_output_tracking_error[2] = pos_err.norm();
/*
* Loop through the output filter state history and apply the corrections to the velocity and position states.
* This method is too expensive to use for the attitude states due to the quaternion operations required
* but because it eliminates the time delay in the 'correction loop' it allows higher tracking gains
* to be used and reduces tracking error relative to EKF states.
*/
// Complementary filter gains
const float vel_gain = _dt_ekf_avg / math::constrain(_params.vel_Tau, _dt_ekf_avg, 10.0f);
const float pos_gain = _dt_ekf_avg / math::constrain(_params.pos_Tau, _dt_ekf_avg, 10.0f);
{
/*
* Calculate a correction to be applied to vel_d that casues vel_d_integ to track the EKF
* down position state at the fusion time horizon using an alternative algorithm to what
* is used for the vel and pos state tracking. The algorithm applies a correction to the vel_d
* state history and propagates vel_d_integ forward in time using the corrected vel_d history.
* This provides an alternative vertical velocity output that is closer to the first derivative
* of the position but does degrade tracking relative to the EKF state.
*/
// calculate down velocity and position tracking errors
const float vel_d_err = (_state.vel(2) - _output_vert_delayed.vel_d);
const float pos_d_err = (_state.pos(2) - _output_vert_delayed.vel_d_integ);
// calculate a velocity correction that will be applied to the output state history
// using a PD feedback tuned to a 5% overshoot
const float vel_d_correction = pos_d_err * pos_gain + vel_d_err * pos_gain * 1.1f;
/*
* Calculate corrections to be applied to vel and pos output state history.
* The vel and pos state history are corrected individually so they track the EKF states at
* the fusion time horizon. This option provides the most accurate tracking of EKF states.
*/
// loop through the vertical output filter state history starting at the oldest and apply the corrections to the
// vel_d states and propagate vel_d_integ forward using the corrected vel_d
uint8_t index = _output_vert_buffer.get_oldest_index();
const uint8_t size = _output_vert_buffer.get_length();
for (uint8_t counter = 0; counter < (size - 1); counter++) {
const uint8_t index_next = (index + 1) % size;
outputVert &current_state = _output_vert_buffer[index];
outputVert &next_state = _output_vert_buffer[index_next];
// correct the velocity
if (counter == 0) {
current_state.vel_d += vel_d_correction;
}
next_state.vel_d += vel_d_correction;
// position is propagated forward using the corrected velocity and a trapezoidal integrator
next_state.vel_d_integ = current_state.vel_d_integ + (current_state.vel_d + next_state.vel_d) * 0.5f * next_state.dt;
// advance the index
index = (index + 1) % size;
}
// update output state to corrected values
_output_vert_new = _output_vert_buffer.get_newest();
// reset time delta to zero for the next accumulation of full rate IMU data
_output_vert_new.dt = 0.0f;
}
{
/*
* Calculate corrections to be applied to vel and pos output state history.
* The vel and pos state history are corrected individually so they track the EKF states at
* the fusion time horizon. This option provides the most accurate tracking of EKF states.
*/
// calculate a velocity correction that will be applied to the output state history
_vel_err_integ += vel_err;
const Vector3f vel_correction = vel_err * vel_gain + _vel_err_integ * sq(vel_gain) * 0.1f;
// calculate a position correction that will be applied to the output state history
_pos_err_integ += pos_err;
const Vector3f pos_correction = pos_err * pos_gain + _pos_err_integ * sq(pos_gain) * 0.1f;
// loop through the output filter state history and apply the corrections to the velocity and position states
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
// a constant velocity correction is applied
_output_buffer[index].vel += vel_correction;
// a constant position correction is applied
_output_buffer[index].pos += pos_correction;
}
// update output state to corrected values
_output_new = _output_buffer.get_newest();
}
}
}
/*
* Predict the previous quaternion output state forward using the latest IMU delta angle data.
*/
Quatf Ekf::calculate_quaternion() const
{
// Correct delta angle data for bias errors using bias state estimates from the EKF and also apply
// corrections required to track the EKF quaternion states
const Vector3f delta_angle{_newest_high_rate_imu_sample.delta_ang - _state.delta_ang_bias * (_dt_imu_avg / _dt_ekf_avg) + _delta_angle_corr};
// increment the quaternions using the corrected delta angle vector
// the quaternions must always be normalised after modification
return Quatf{_output_new.quat_nominal * AxisAnglef{delta_angle}}.unit();
}