You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
283 lines
21 KiB
283 lines
21 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file sideslip_fusion.cpp |
|
* sideslip fusion methods. |
|
* |
|
* @author Carl Olsson <carlolsson.co@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
|
|
void Ekf::fuseSideslip() |
|
{ |
|
float SH_BETA[13] = {}; // Variable used to optimise calculations of measurement jacobian |
|
float H_BETA[24] = {}; // Observation Jacobian |
|
float SK_BETA[8] = {}; // Variable used to optimise calculations of the Kalman gain vector |
|
float Kfusion[24] = {}; // Kalman gain vector |
|
float R_BETA = _params.beta_noise; |
|
|
|
// get latest estimated orientation |
|
const float q0 = _state.quat_nominal(0); |
|
const float q1 = _state.quat_nominal(1); |
|
const float q2 = _state.quat_nominal(2); |
|
const float q3 = _state.quat_nominal(3); |
|
|
|
// get latest velocity in earth frame |
|
const float vn = _state.vel(0); |
|
const float ve = _state.vel(1); |
|
const float vd = _state.vel(2); |
|
|
|
// get latest wind velocity in earth frame |
|
const float vwn = _state.wind_vel(0); |
|
const float vwe = _state.wind_vel(1); |
|
|
|
// relative wind velocity in earth frame |
|
Vector3f rel_wind; |
|
rel_wind(0) = vn - vwn; |
|
rel_wind(1) = ve - vwe; |
|
rel_wind(2) = vd; |
|
|
|
const Dcmf earth_to_body = quat_to_invrotmat(_state.quat_nominal); |
|
|
|
// rotate into body axes |
|
rel_wind = earth_to_body * rel_wind; |
|
|
|
// perform fusion of assumed sideslip = 0 |
|
if (rel_wind.norm() > 7.0f) { |
|
// Calculate the observation jacobians |
|
|
|
// intermediate variable from algebraic optimisation |
|
SH_BETA[0] = (vn - vwn)*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2.0f*q0*q2 - 2.0f*q1*q3) + (ve - vwe)*(2.0f*q0*q3 + 2.0f*q1*q2); |
|
|
|
if (fabsf(SH_BETA[0]) <= 1e-9f) { |
|
return; |
|
} |
|
|
|
SH_BETA[1] = (ve - vwe)*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2.0f*q0*q1 + 2.0f*q2*q3) - (vn - vwn)*(2.0f*q0*q3 - 2.0f*q1*q2); |
|
SH_BETA[2] = vn - vwn; |
|
SH_BETA[3] = ve - vwe; |
|
SH_BETA[4] = 1.0f/sq(SH_BETA[0]); |
|
SH_BETA[5] = 1.0f/SH_BETA[0]; |
|
SH_BETA[6] = SH_BETA[5]*(sq(q0) - sq(q1) + sq(q2) - sq(q3)); |
|
SH_BETA[7] = sq(q0) + sq(q1) - sq(q2) - sq(q3); |
|
SH_BETA[8] = 2.0f*q0*SH_BETA[3] - 2.0f*q3*SH_BETA[2] + 2.0f*q1*vd; |
|
SH_BETA[9] = 2.0f*q0*SH_BETA[2] + 2.0f*q3*SH_BETA[3] - 2.0f*q2*vd; |
|
SH_BETA[10] = 2.0f*q2*SH_BETA[2] - 2.0f*q1*SH_BETA[3] + 2.0f*q0*vd; |
|
SH_BETA[11] = 2.0f*q1*SH_BETA[2] + 2.0f*q2*SH_BETA[3] + 2.0f*q3*vd; |
|
SH_BETA[12] = 2.0f*q0*q3; |
|
|
|
H_BETA[0] = SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]; |
|
H_BETA[1] = SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]; |
|
H_BETA[2] = SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]; |
|
H_BETA[3] = - SH_BETA[5]*SH_BETA[9] - SH_BETA[1]*SH_BETA[4]*SH_BETA[8]; |
|
H_BETA[4] = - SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) - SH_BETA[1]*SH_BETA[4]*SH_BETA[7]; |
|
H_BETA[5] = SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2); |
|
H_BETA[6] = SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3); |
|
H_BETA[22] = SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]; |
|
H_BETA[23] = SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2) - SH_BETA[6]; |
|
|
|
for (uint8_t i = 7; i <= 21; i++) { |
|
H_BETA[i] = 0.0f; |
|
} |
|
|
|
// determine if we need the sideslip fusion to correct states other than wind |
|
bool update_wind_only = !_is_wind_dead_reckoning; |
|
|
|
// intermediate variables - note SK_BETA[0] is 1/(innovation variance) |
|
_beta_innov_var = (R_BETA - (SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7])*(P(22,4)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,4)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,4)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,4)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,4)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,4)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,4)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,4)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,4)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7])*(P(22,22)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,22)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,22)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,22)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,22)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,22)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,22)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,22)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,22)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2))*(P(22,5)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,5)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,5)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,5)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,5)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,5)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,5)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,5)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,5)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) - (SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2))*(P(22,23)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,23)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,23)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,23)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,23)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,23)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,23)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,23)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,23)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9])*(P(22,0)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,0)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,0)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,0)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,0)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,0)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,0)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,0)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,0)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11])*(P(22,1)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,1)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,1)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,1)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,1)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,1)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,1)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,1)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,1)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10])*(P(22,2)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,2)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,2)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,2)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,2)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,2)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,2)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,2)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,2)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) - (SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8])*(P(22,3)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,3)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,3)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,3)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,3)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,3)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,3)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,3)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,3)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))) + (SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3))*(P(22,6)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) - P(4,6)*(SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]) + P(5,6)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) - P(23,6)*(SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2)) + P(0,6)*(SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]) + P(1,6)*(SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]) + P(2,6)*(SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]) - P(3,6)*(SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]) + P(6,6)*(SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3)))); |
|
if (_beta_innov_var >= R_BETA) { |
|
SK_BETA[0] = 1.0f / _beta_innov_var; |
|
_fault_status.flags.bad_sideslip = false; |
|
|
|
} else { // Reset the estimator |
|
_fault_status.flags.bad_sideslip = true; |
|
|
|
// if we are getting aiding from other sources, warn and reset the wind states and covariances only |
|
if (update_wind_only) { |
|
resetWindStates(); |
|
resetWindCovariance(); |
|
ECL_ERR_TIMESTAMPED("synthetic sideslip fusion badly conditioned - wind covariance reset"); |
|
|
|
} else { |
|
initialiseCovariance(); |
|
_state.wind_vel.setZero(); |
|
ECL_ERR_TIMESTAMPED("synthetic sideslip fusion badly conditioned - full covariance reset"); |
|
} |
|
|
|
return; |
|
} |
|
|
|
SK_BETA[1] = SH_BETA[5]*(SH_BETA[12] - 2.0f*q1*q2) + SH_BETA[1]*SH_BETA[4]*SH_BETA[7]; |
|
SK_BETA[2] = SH_BETA[6] - SH_BETA[1]*SH_BETA[4]*(SH_BETA[12] + 2.0f*q1*q2); |
|
SK_BETA[3] = SH_BETA[5]*(2.0f*q0*q1 + 2.0f*q2*q3) + SH_BETA[1]*SH_BETA[4]*(2.0f*q0*q2 - 2.0f*q1*q3); |
|
SK_BETA[4] = SH_BETA[5]*SH_BETA[10] - SH_BETA[1]*SH_BETA[4]*SH_BETA[11]; |
|
SK_BETA[5] = SH_BETA[5]*SH_BETA[8] - SH_BETA[1]*SH_BETA[4]*SH_BETA[9]; |
|
SK_BETA[6] = SH_BETA[5]*SH_BETA[11] + SH_BETA[1]*SH_BETA[4]*SH_BETA[10]; |
|
SK_BETA[7] = SH_BETA[5]*SH_BETA[9] + SH_BETA[1]*SH_BETA[4]*SH_BETA[8]; |
|
|
|
// Calculate Kalman gains |
|
if (update_wind_only) { |
|
// If we are getting aiding from other sources, then don't allow the sideslip fusion to affect the non-windspeed states |
|
for (unsigned row = 0; row <= 21; row++) { |
|
Kfusion[row] = 0.0f; |
|
|
|
} |
|
|
|
} else { |
|
Kfusion[0] = SK_BETA[0]*(P(0,0)*SK_BETA[5] + P(0,1)*SK_BETA[4] - P(0,4)*SK_BETA[1] + P(0,5)*SK_BETA[2] + P(0,2)*SK_BETA[6] + P(0,6)*SK_BETA[3] - P(0,3)*SK_BETA[7] + P(0,22)*SK_BETA[1] - P(0,23)*SK_BETA[2]); |
|
Kfusion[1] = SK_BETA[0]*(P(1,0)*SK_BETA[5] + P(1,1)*SK_BETA[4] - P(1,4)*SK_BETA[1] + P(1,5)*SK_BETA[2] + P(1,2)*SK_BETA[6] + P(1,6)*SK_BETA[3] - P(1,3)*SK_BETA[7] + P(1,22)*SK_BETA[1] - P(1,23)*SK_BETA[2]); |
|
Kfusion[2] = SK_BETA[0]*(P(2,0)*SK_BETA[5] + P(2,1)*SK_BETA[4] - P(2,4)*SK_BETA[1] + P(2,5)*SK_BETA[2] + P(2,2)*SK_BETA[6] + P(2,6)*SK_BETA[3] - P(2,3)*SK_BETA[7] + P(2,22)*SK_BETA[1] - P(2,23)*SK_BETA[2]); |
|
Kfusion[3] = SK_BETA[0]*(P(3,0)*SK_BETA[5] + P(3,1)*SK_BETA[4] - P(3,4)*SK_BETA[1] + P(3,5)*SK_BETA[2] + P(3,2)*SK_BETA[6] + P(3,6)*SK_BETA[3] - P(3,3)*SK_BETA[7] + P(3,22)*SK_BETA[1] - P(3,23)*SK_BETA[2]); |
|
Kfusion[4] = SK_BETA[0]*(P(4,0)*SK_BETA[5] + P(4,1)*SK_BETA[4] - P(4,4)*SK_BETA[1] + P(4,5)*SK_BETA[2] + P(4,2)*SK_BETA[6] + P(4,6)*SK_BETA[3] - P(4,3)*SK_BETA[7] + P(4,22)*SK_BETA[1] - P(4,23)*SK_BETA[2]); |
|
Kfusion[5] = SK_BETA[0]*(P(5,0)*SK_BETA[5] + P(5,1)*SK_BETA[4] - P(5,4)*SK_BETA[1] + P(5,5)*SK_BETA[2] + P(5,2)*SK_BETA[6] + P(5,6)*SK_BETA[3] - P(5,3)*SK_BETA[7] + P(5,22)*SK_BETA[1] - P(5,23)*SK_BETA[2]); |
|
Kfusion[6] = SK_BETA[0]*(P(6,0)*SK_BETA[5] + P(6,1)*SK_BETA[4] - P(6,4)*SK_BETA[1] + P(6,5)*SK_BETA[2] + P(6,2)*SK_BETA[6] + P(6,6)*SK_BETA[3] - P(6,3)*SK_BETA[7] + P(6,22)*SK_BETA[1] - P(6,23)*SK_BETA[2]); |
|
Kfusion[7] = SK_BETA[0]*(P(7,0)*SK_BETA[5] + P(7,1)*SK_BETA[4] - P(7,4)*SK_BETA[1] + P(7,5)*SK_BETA[2] + P(7,2)*SK_BETA[6] + P(7,6)*SK_BETA[3] - P(7,3)*SK_BETA[7] + P(7,22)*SK_BETA[1] - P(7,23)*SK_BETA[2]); |
|
Kfusion[8] = SK_BETA[0]*(P(8,0)*SK_BETA[5] + P(8,1)*SK_BETA[4] - P(8,4)*SK_BETA[1] + P(8,5)*SK_BETA[2] + P(8,2)*SK_BETA[6] + P(8,6)*SK_BETA[3] - P(8,3)*SK_BETA[7] + P(8,22)*SK_BETA[1] - P(8,23)*SK_BETA[2]); |
|
Kfusion[9] = SK_BETA[0]*(P(9,0)*SK_BETA[5] + P(9,1)*SK_BETA[4] - P(9,4)*SK_BETA[1] + P(9,5)*SK_BETA[2] + P(9,2)*SK_BETA[6] + P(9,6)*SK_BETA[3] - P(9,3)*SK_BETA[7] + P(9,22)*SK_BETA[1] - P(9,23)*SK_BETA[2]); |
|
Kfusion[10] = SK_BETA[0]*(P(10,0)*SK_BETA[5] + P(10,1)*SK_BETA[4] - P(10,4)*SK_BETA[1] + P(10,5)*SK_BETA[2] + P(10,2)*SK_BETA[6] + P(10,6)*SK_BETA[3] - P(10,3)*SK_BETA[7] + P(10,22)*SK_BETA[1] - P(10,23)*SK_BETA[2]); |
|
Kfusion[11] = SK_BETA[0]*(P(11,0)*SK_BETA[5] + P(11,1)*SK_BETA[4] - P(11,4)*SK_BETA[1] + P(11,5)*SK_BETA[2] + P(11,2)*SK_BETA[6] + P(11,6)*SK_BETA[3] - P(11,3)*SK_BETA[7] + P(11,22)*SK_BETA[1] - P(11,23)*SK_BETA[2]); |
|
Kfusion[12] = SK_BETA[0]*(P(12,0)*SK_BETA[5] + P(12,1)*SK_BETA[4] - P(12,4)*SK_BETA[1] + P(12,5)*SK_BETA[2] + P(12,2)*SK_BETA[6] + P(12,6)*SK_BETA[3] - P(12,3)*SK_BETA[7] + P(12,22)*SK_BETA[1] - P(12,23)*SK_BETA[2]); |
|
Kfusion[13] = SK_BETA[0]*(P(13,0)*SK_BETA[5] + P(13,1)*SK_BETA[4] - P(13,4)*SK_BETA[1] + P(13,5)*SK_BETA[2] + P(13,2)*SK_BETA[6] + P(13,6)*SK_BETA[3] - P(13,3)*SK_BETA[7] + P(13,22)*SK_BETA[1] - P(13,23)*SK_BETA[2]); |
|
Kfusion[14] = SK_BETA[0]*(P(14,0)*SK_BETA[5] + P(14,1)*SK_BETA[4] - P(14,4)*SK_BETA[1] + P(14,5)*SK_BETA[2] + P(14,2)*SK_BETA[6] + P(14,6)*SK_BETA[3] - P(14,3)*SK_BETA[7] + P(14,22)*SK_BETA[1] - P(14,23)*SK_BETA[2]); |
|
Kfusion[15] = SK_BETA[0]*(P(15,0)*SK_BETA[5] + P(15,1)*SK_BETA[4] - P(15,4)*SK_BETA[1] + P(15,5)*SK_BETA[2] + P(15,2)*SK_BETA[6] + P(15,6)*SK_BETA[3] - P(15,3)*SK_BETA[7] + P(15,22)*SK_BETA[1] - P(15,23)*SK_BETA[2]); |
|
|
|
// Only update the magnetometer states if we are airborne and using 3D mag fusion |
|
if (_control_status.flags.mag_3D && _control_status.flags.in_air) { |
|
Kfusion[16] = SK_BETA[0]*(P(16,0)*SK_BETA[5] + P(16,1)*SK_BETA[4] - P(16,4)*SK_BETA[1] + P(16,5)*SK_BETA[2] + P(16,2)*SK_BETA[6] + P(16,6)*SK_BETA[3] - P(16,3)*SK_BETA[7] + P(16,22)*SK_BETA[1] - P(16,23)*SK_BETA[2]); |
|
Kfusion[17] = SK_BETA[0]*(P(17,0)*SK_BETA[5] + P(17,1)*SK_BETA[4] - P(17,4)*SK_BETA[1] + P(17,5)*SK_BETA[2] + P(17,2)*SK_BETA[6] + P(17,6)*SK_BETA[3] - P(17,3)*SK_BETA[7] + P(17,22)*SK_BETA[1] - P(17,23)*SK_BETA[2]); |
|
Kfusion[18] = SK_BETA[0]*(P(18,0)*SK_BETA[5] + P(18,1)*SK_BETA[4] - P(18,4)*SK_BETA[1] + P(18,5)*SK_BETA[2] + P(18,2)*SK_BETA[6] + P(18,6)*SK_BETA[3] - P(18,3)*SK_BETA[7] + P(18,22)*SK_BETA[1] - P(18,23)*SK_BETA[2]); |
|
Kfusion[19] = SK_BETA[0]*(P(19,0)*SK_BETA[5] + P(19,1)*SK_BETA[4] - P(19,4)*SK_BETA[1] + P(19,5)*SK_BETA[2] + P(19,2)*SK_BETA[6] + P(19,6)*SK_BETA[3] - P(19,3)*SK_BETA[7] + P(19,22)*SK_BETA[1] - P(19,23)*SK_BETA[2]); |
|
Kfusion[20] = SK_BETA[0]*(P(20,0)*SK_BETA[5] + P(20,1)*SK_BETA[4] - P(20,4)*SK_BETA[1] + P(20,5)*SK_BETA[2] + P(20,2)*SK_BETA[6] + P(20,6)*SK_BETA[3] - P(20,3)*SK_BETA[7] + P(20,22)*SK_BETA[1] - P(20,23)*SK_BETA[2]); |
|
Kfusion[21] = SK_BETA[0]*(P(21,0)*SK_BETA[5] + P(21,1)*SK_BETA[4] - P(21,4)*SK_BETA[1] + P(21,5)*SK_BETA[2] + P(21,2)*SK_BETA[6] + P(21,6)*SK_BETA[3] - P(21,3)*SK_BETA[7] + P(21,22)*SK_BETA[1] - P(21,23)*SK_BETA[2]); |
|
|
|
} else { |
|
for (int i = 16; i <= 21; i++) { |
|
Kfusion[i] = 0.0f; |
|
|
|
} |
|
} |
|
} |
|
|
|
Kfusion[22] = SK_BETA[0]*(P(22,0)*SK_BETA[5] + P(22,1)*SK_BETA[4] - P(22,4)*SK_BETA[1] + P(22,5)*SK_BETA[2] + P(22,2)*SK_BETA[6] + P(22,6)*SK_BETA[3] - P(22,3)*SK_BETA[7] + P(22,22)*SK_BETA[1] - P(22,23)*SK_BETA[2]); |
|
Kfusion[23] = SK_BETA[0]*(P(23,0)*SK_BETA[5] + P(23,1)*SK_BETA[4] - P(23,4)*SK_BETA[1] + P(23,5)*SK_BETA[2] + P(23,2)*SK_BETA[6] + P(23,6)*SK_BETA[3] - P(23,3)*SK_BETA[7] + P(23,22)*SK_BETA[1] - P(23,23)*SK_BETA[2]); |
|
|
|
// Calculate predicted sideslip angle and innovation using small angle approximation |
|
_beta_innov = rel_wind(1) / rel_wind(0); |
|
|
|
// Compute the ratio of innovation to gate size |
|
_beta_test_ratio = sq(_beta_innov) / (sq(fmaxf(_params.beta_innov_gate, 1.0f)) * _beta_innov_var); |
|
|
|
// if the innovation consistency check fails then don't fuse the sample and indicate bad beta health |
|
if (_beta_test_ratio > 1.0f) { |
|
_innov_check_fail_status.flags.reject_sideslip = true; |
|
return; |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_sideslip = false; |
|
} |
|
|
|
// synthetic sideslip measurement sample has passed check so record it |
|
_time_last_beta_fuse = _time_last_imu; |
|
|
|
// apply covariance correction via P_new = (I -K*H)*P |
|
// first calculate expression for KHP |
|
// then calculate P - KHP |
|
matrix::SquareMatrix<float, _k_num_states> KHP; |
|
float KH[9]; |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
KH[0] = Kfusion[row] * H_BETA[0]; |
|
KH[1] = Kfusion[row] * H_BETA[1]; |
|
KH[2] = Kfusion[row] * H_BETA[2]; |
|
KH[3] = Kfusion[row] * H_BETA[3]; |
|
KH[4] = Kfusion[row] * H_BETA[4]; |
|
KH[5] = Kfusion[row] * H_BETA[5]; |
|
KH[6] = Kfusion[row] * H_BETA[6]; |
|
KH[7] = Kfusion[row] * H_BETA[22]; |
|
KH[8] = Kfusion[row] * H_BETA[23]; |
|
|
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
float tmp = KH[0] * P(0,column); |
|
tmp += KH[1] * P(1,column); |
|
tmp += KH[2] * P(2,column); |
|
tmp += KH[3] * P(3,column); |
|
tmp += KH[4] * P(4,column); |
|
tmp += KH[5] * P(5,column); |
|
tmp += KH[6] * P(6,column); |
|
tmp += KH[7] * P(22,column); |
|
tmp += KH[8] * P(23,column); |
|
KHP(row,column) = tmp; |
|
} |
|
} |
|
|
|
// if the covariance correction will result in a negative variance, then |
|
// the covariance matrix is unhealthy and must be corrected |
|
bool healthy = true; |
|
_fault_status.flags.bad_sideslip = false; |
|
|
|
for (int i = 0; i < _k_num_states; i++) { |
|
if (P(i,i) < KHP(i,i)) { |
|
// zero rows and columns |
|
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f); |
|
|
|
//flag as unhealthy |
|
healthy = false; |
|
|
|
// update individual measurement health status |
|
_fault_status.flags.bad_sideslip = true; |
|
} |
|
} |
|
|
|
// only apply covariance and state corrections if healthy |
|
if (healthy) { |
|
// apply the covariance corrections |
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
P(row,column) = P(row,column) - KHP(row,column); |
|
} |
|
} |
|
|
|
// correct the covariance matrix for gross errors |
|
fixCovarianceErrors(true); |
|
|
|
// apply the state corrections |
|
fuse(Kfusion, _beta_innov); |
|
} |
|
} |
|
}
|
|
|