You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
608 lines
19 KiB
608 lines
19 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.cpp |
|
* Core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include "mathlib.h" |
|
|
|
Ekf::Ekf(): |
|
_filter_initialised(false), |
|
_earth_rate_initialised(false), |
|
_fuse_height(false), |
|
_fuse_pos(false), |
|
_fuse_hor_vel(false), |
|
_fuse_vert_vel(false), |
|
_fuse_flow(false), |
|
_fuse_hagl_data(false), |
|
_time_last_fake_gps(0), |
|
_time_last_pos_fuse(0), |
|
_time_last_vel_fuse(0), |
|
_time_last_hgt_fuse(0), |
|
_time_last_of_fuse(0), |
|
_last_disarmed_posD(0.0f), |
|
_airspeed_innov(0.0f), |
|
_airspeed_innov_var(0.0f), |
|
_heading_innov(0.0f), |
|
_heading_innov_var(0.0f), |
|
_delta_time_of(0.0f), |
|
_mag_declination(0.0f), |
|
_gpsDriftVelN(0.0f), |
|
_gpsDriftVelE(0.0f), |
|
_gps_drift_velD(0.0f), |
|
_gps_velD_diff_filt(0.0f), |
|
_gps_velN_filt(0.0f), |
|
_gps_velE_filt(0.0f), |
|
_last_gps_fail_us(0), |
|
_last_gps_origin_time_us(0), |
|
_gps_alt_ref(0.0f), |
|
_hgt_counter(0), |
|
_hgt_filt_state(0.0f), |
|
_mag_counter(0), |
|
_time_last_mag(0), |
|
_hgt_sensor_offset(0.0f), |
|
_terrain_vpos(0.0f), |
|
_hagl_innov(0.0f), |
|
_hagl_innov_var(0.0f), |
|
_time_last_hagl_fuse(0), |
|
_baro_hgt_faulty(false), |
|
_gps_hgt_faulty(false), |
|
_rng_hgt_faulty(false), |
|
_baro_hgt_offset(0.0f) |
|
{ |
|
_state = {}; |
|
_last_known_posNE.setZero(); |
|
_earth_rate_NED.setZero(); |
|
_R_prev = matrix::Dcm<float>(); |
|
memset(_vel_pos_innov, 0, sizeof(_vel_pos_innov)); |
|
memset(_mag_innov, 0, sizeof(_mag_innov)); |
|
memset(_flow_innov, 0, sizeof(_flow_innov)); |
|
memset(_vel_pos_innov_var, 0, sizeof(_vel_pos_innov_var)); |
|
memset(_mag_innov_var, 0, sizeof(_mag_innov_var)); |
|
memset(_flow_innov_var, 0, sizeof(_flow_innov_var)); |
|
_delta_angle_corr.setZero(); |
|
_delta_vel_corr.setZero(); |
|
_vel_corr.setZero(); |
|
_last_known_posNE.setZero(); |
|
_imu_down_sampled = {}; |
|
_q_down_sampled.setZero(); |
|
_mag_filt_state = {}; |
|
_delVel_sum = {}; |
|
_flow_gyro_bias = {}; |
|
_imu_del_ang_of = {}; |
|
} |
|
|
|
Ekf::~Ekf() |
|
{ |
|
} |
|
|
|
bool Ekf::init(uint64_t timestamp) |
|
{ |
|
bool ret = initialise_interface(timestamp); |
|
_state.ang_error.setZero(); |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.gyro_bias.setZero(); |
|
_state.gyro_scale(0) = 1.0f; |
|
_state.gyro_scale(1) = 1.0f; |
|
_state.gyro_scale(2) = 1.0f; |
|
_state.accel_z_bias = 0.0f; |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
_state.quat_nominal.setZero(); |
|
_state.quat_nominal(0) = 1.0f; |
|
|
|
_output_new.vel.setZero(); |
|
_output_new.pos.setZero(); |
|
_output_new.quat_nominal = matrix::Quaternion<float>(); |
|
|
|
_delta_angle_corr.setZero(); |
|
_delta_vel_corr.setZero(); |
|
_vel_corr.setZero(); |
|
|
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_imu_down_sampled.time_us = timestamp; |
|
|
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = 0.0f; |
|
_q_down_sampled(2) = 0.0f; |
|
_q_down_sampled(3) = 0.0f; |
|
|
|
_imu_updated = false; |
|
_NED_origin_initialised = false; |
|
_gps_speed_valid = false; |
|
_mag_healthy = false; |
|
|
|
_filter_initialised = false; |
|
_terrain_initialised = false; |
|
|
|
_control_status.value = 0; |
|
_control_status_prev.value = 0; |
|
|
|
return ret; |
|
} |
|
|
|
bool Ekf::update() |
|
{ |
|
|
|
if (!_filter_initialised) { |
|
_filter_initialised = initialiseFilter(); |
|
|
|
if (!_filter_initialised) { |
|
return false; |
|
} |
|
} |
|
|
|
// Only run the filter if IMU data in the buffer has been updated |
|
if (_imu_updated) { |
|
|
|
// perform state and covariance prediction for the main filter |
|
predictState(); |
|
predictCovariance(); |
|
|
|
// perform state and variance prediction for the terrain estimator |
|
if (!_terrain_initialised) { |
|
_terrain_initialised = initHagl(); |
|
|
|
} else { |
|
predictHagl(); |
|
} |
|
|
|
// control logic |
|
controlFusionModes(); |
|
|
|
// measurement updates |
|
|
|
// Fuse magnetometer data using the selected fuson method and only if angular alignment is complete |
|
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { |
|
if (_control_status.flags.mag_3D && _control_status.flags.yaw_align) { |
|
fuseMag(); |
|
|
|
if (_control_status.flags.mag_dec) { |
|
fuseDeclination(); |
|
} |
|
|
|
} else if (_control_status.flags.mag_2D && _control_status.flags.yaw_align) { |
|
fuseMag2D(); |
|
|
|
} else if (_control_status.flags.mag_hdg && _control_status.flags.yaw_align) { |
|
// fusion of a Euler yaw angle from either a 321 or 312 rotation sequence |
|
fuseHeading(); |
|
|
|
} else { |
|
// do no fusion at all |
|
} |
|
} |
|
|
|
// determine if range finder data has fallen behind the fusin time horizon fuse it if we are |
|
// not tilted too much to use it |
|
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed) |
|
&& (_R_prev(2, 2) > 0.7071f)) { |
|
// if we have range data we always try to estimate terrain height |
|
_fuse_hagl_data = true; |
|
|
|
// only use range finder as a height observation in the main filter if specifically enabled |
|
if (_control_status.flags.rng_hgt) { |
|
_fuse_height = true; |
|
} |
|
|
|
} else if ((_time_last_imu - _time_last_hgt_fuse) > 2 * RNG_MAX_INTERVAL && _control_status.flags.rng_hgt) { |
|
// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements |
|
// and are on the ground, then synthesise a measurement at the expected on ground value |
|
if (!_in_air) { |
|
_range_sample_delayed.rng = _params.rng_gnd_clearance; |
|
_range_sample_delayed.time_us = _imu_sample_delayed.time_us; |
|
|
|
} |
|
|
|
_fuse_height = true; |
|
} |
|
|
|
// determine if baro data has fallen behind the fuson time horizon and fuse it in the main filter if enabled |
|
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { |
|
if (_control_status.flags.baro_hgt) { |
|
_fuse_height = true; |
|
|
|
} else { |
|
// calculate a filtered offset between the baro origin and local NED origin if we are not using the baro as a height reference |
|
float offset_error = _state.pos(2) + _baro_sample_delayed.hgt - _hgt_sensor_offset - _baro_hgt_offset; |
|
_baro_hgt_offset += 0.02f * math::constrain(offset_error, -5.0f, 5.0f); |
|
} |
|
} |
|
|
|
// If we are using GPS aiding and data has fallen behind the fusion time horizon then fuse it |
|
if (_gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed)) { |
|
// Only use GPS data for position and velocity aiding if enabled |
|
if (_control_status.flags.gps) { |
|
_fuse_pos = true; |
|
_fuse_vert_vel = true; |
|
_fuse_hor_vel = true; |
|
} |
|
|
|
// only use gps height observation in the main filter if specifically enabled |
|
if (_control_status.flags.gps_hgt) { |
|
_fuse_height = true; |
|
} |
|
|
|
} |
|
|
|
// If we are using optical flow aiding and data has fallen behind the fusion time horizon, then fuse it |
|
if (_flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed) |
|
&& _control_status.flags.opt_flow && (_time_last_imu - _time_last_optflow) < 2e5 |
|
&& (_R_prev(2, 2) > 0.7071f)) { |
|
_fuse_flow = true; |
|
} |
|
|
|
// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift |
|
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz |
|
if (!_control_status.flags.gps && !_control_status.flags.opt_flow |
|
&& ((_time_last_imu - _time_last_fake_gps > 2e5) || _fuse_height)) { |
|
_fuse_pos = true; |
|
_gps_sample_delayed.pos(0) = _last_known_posNE(0); |
|
_gps_sample_delayed.pos(1) = _last_known_posNE(1); |
|
_time_last_fake_gps = _time_last_imu; |
|
} |
|
|
|
// fuse available range finder data into a terrain height estimator if it has been initialised |
|
if (_fuse_hagl_data && _terrain_initialised) { |
|
fuseHagl(); |
|
_fuse_hagl_data = false; |
|
} |
|
|
|
// Fuse available NED velocity and position data into the main filter |
|
if (_fuse_height || _fuse_pos || _fuse_hor_vel || _fuse_vert_vel) { |
|
fuseVelPosHeight(); |
|
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false; |
|
} |
|
|
|
// Update optical flow bias estimates |
|
calcOptFlowBias(); |
|
|
|
// Fuse optical flow LOS rate observations into the main filter |
|
if (_fuse_flow) { |
|
fuseOptFlow(); |
|
_last_known_posNE(0) = _state.pos(0); |
|
_last_known_posNE(1) = _state.pos(1); |
|
_fuse_flow = false; |
|
} |
|
|
|
// TODO This is just to get the logic inside but we will only start fusion once we tested this again |
|
if (_airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed) && false) { |
|
fuseAirspeed(); |
|
} |
|
} |
|
|
|
// the output observer always runs |
|
calculateOutputStates(); |
|
|
|
// check for NaN on attitude states |
|
if (isnan(_state.quat_nominal(0)) || isnan(_output_new.quat_nominal(0))) { |
|
return false; |
|
} |
|
|
|
// We don't have valid data to output until tilt and yaw alignment is complete |
|
if (_control_status.flags.tilt_align && _control_status.flags.yaw_align) { |
|
return true; |
|
|
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
bool Ekf::initialiseFilter(void) |
|
{ |
|
// Keep accumulating measurements until we have a minimum of 10 samples for the baro and magnetoemter |
|
|
|
// Sum the IMU delta angle measurements |
|
imuSample imu_init = _imu_buffer.get_newest(); |
|
_delVel_sum += imu_init.delta_vel; |
|
|
|
// Sum the magnetometer measurements |
|
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { |
|
if (_mag_counter == 0 && _mag_sample_delayed.time_us !=0) { |
|
// initialise the filter states and counter when we start getting valid data from the buffer |
|
_mag_filt_state = _mag_sample_delayed.mag; |
|
_mag_counter = 1; |
|
} else if (_mag_counter != 0) { |
|
// increment the sample count and apply a LPF to the measurement |
|
_mag_counter ++; |
|
_mag_filt_state = _mag_filt_state * 0.9f + _mag_sample_delayed.mag * 0.1f; |
|
} |
|
} |
|
|
|
// set the default height source from the adjustable parameter |
|
if (_hgt_counter == 0) { |
|
_primary_hgt_source = _params.vdist_sensor_type; |
|
} |
|
|
|
if (_primary_hgt_source == VDIST_SENSOR_RANGE) { |
|
if (_range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_range_sample_delayed)) { |
|
if (_hgt_counter == 0 && _range_sample_delayed.time_us != 0) { |
|
// initialise the filter states and counter when we start getting valid data from the buffer |
|
_control_status.flags.baro_hgt = false; |
|
_control_status.flags.gps_hgt = false; |
|
_control_status.flags.rng_hgt = true; |
|
_hgt_filt_state = _range_sample_delayed.rng; |
|
_hgt_counter = 1; |
|
} else if (_hgt_counter != 0) { |
|
// increment the sample count and apply a LPF to the measurement |
|
_hgt_counter ++; |
|
_hgt_filt_state = 0.9f * _hgt_filt_state + 0.1f * _range_sample_delayed.rng; |
|
} |
|
} |
|
|
|
} else if (_primary_hgt_source == VDIST_SENSOR_BARO || _primary_hgt_source == VDIST_SENSOR_GPS) { |
|
// if the user parameter specifies use of GPS for height we use baro height initially and switch to GPS |
|
// later when it passes checks. |
|
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { |
|
if (_hgt_counter == 0 && _baro_sample_delayed.time_us != 0) { |
|
// initialise the filter states and counter when we start getting valid data from the buffer |
|
_control_status.flags.baro_hgt = true; |
|
_control_status.flags.gps_hgt = false; |
|
_control_status.flags.rng_hgt = false; |
|
_hgt_filt_state = _baro_sample_delayed.hgt; |
|
_hgt_counter = 1; |
|
} else if (_hgt_counter != 0) { |
|
// increment the sample count and apply a LPF to the measurement |
|
_hgt_counter ++; |
|
_hgt_filt_state = 0.9f * _hgt_filt_state + 0.1f * _baro_sample_delayed.hgt; |
|
} |
|
} |
|
|
|
} else { |
|
return false; |
|
} |
|
|
|
// check to see if we have enough measurements and return false if not |
|
if (_hgt_counter <= 10 || _mag_counter <= 10) { |
|
return false; |
|
|
|
} else { |
|
// reset variables that are shared with post alignment GPS checks |
|
_gps_drift_velD = 0.0f; |
|
_gps_alt_ref = 0.0f; |
|
|
|
// Zero all of the states |
|
_state.ang_error.setZero(); |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.gyro_bias.setZero(); |
|
_state.gyro_scale(0) = _state.gyro_scale(1) = _state.gyro_scale(2) = 1.0f; |
|
_state.accel_z_bias = 0.0f; |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
|
|
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static |
|
float pitch = 0.0f; |
|
float roll = 0.0f; |
|
|
|
if (_delVel_sum.norm() > 0.001f) { |
|
_delVel_sum.normalize(); |
|
pitch = asinf(_delVel_sum(0)); |
|
roll = atan2f(-_delVel_sum(1), -_delVel_sum(2)); |
|
|
|
} else { |
|
return false; |
|
} |
|
|
|
// calculate initial tilt alignment |
|
matrix::Euler<float> euler_init(roll, pitch, 0.0f); |
|
_state.quat_nominal = Quaternion(euler_init); |
|
_output_new.quat_nominal = _state.quat_nominal; |
|
|
|
// initialise the filtered alignment error estimate to a larger starting value |
|
_tilt_err_length_filt = 1.0f; |
|
|
|
// calculate the averaged magnetometer reading |
|
Vector3f mag_init = _mag_filt_state; |
|
|
|
// calculate the initial magnetic field and yaw alignment |
|
resetMagHeading(mag_init); |
|
|
|
// calculate the averaged height reading to calulate the height of the origin |
|
_hgt_sensor_offset = _hgt_filt_state; |
|
|
|
// if we are not using the baro height as the primary source, then calculate an offset relative to the origin |
|
// so it can be used as a backup |
|
if (!_control_status.flags.baro_hgt) { |
|
baroSample baro_newest = _baro_buffer.get_newest(); |
|
_baro_hgt_offset = baro_newest.hgt - _hgt_sensor_offset; |
|
|
|
} else { |
|
_baro_hgt_offset = 0.0f; |
|
} |
|
|
|
// initialise the state covariance matrix |
|
initialiseCovariance(); |
|
|
|
// initialise the terrain estimator |
|
initHagl(); |
|
|
|
return true; |
|
} |
|
} |
|
|
|
void Ekf::predictState() |
|
{ |
|
if (!_earth_rate_initialised) { |
|
if (_NED_origin_initialised) { |
|
calcEarthRateNED(_earth_rate_NED, _pos_ref.lat_rad); |
|
_earth_rate_initialised = true; |
|
} |
|
} |
|
|
|
// attitude error state prediction |
|
matrix::Dcm<float> R_to_earth(_state.quat_nominal); // transformation matrix from body to world frame |
|
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _R_prev * _earth_rate_NED * |
|
_imu_sample_delayed.delta_ang_dt; |
|
Quaternion dq; // delta quaternion since last update |
|
dq.from_axis_angle(corrected_delta_ang); |
|
_state.quat_nominal = dq * _state.quat_nominal; |
|
_state.quat_nominal.normalize(); |
|
|
|
_R_prev = R_to_earth.transpose(); |
|
|
|
Vector3f vel_last = _state.vel; |
|
|
|
// predict velocity states |
|
_state.vel += R_to_earth * _imu_sample_delayed.delta_vel; |
|
_state.vel(2) += 9.81f * _imu_sample_delayed.delta_vel_dt; |
|
|
|
// predict position states via trapezoidal integration of velocity |
|
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f; |
|
|
|
constrainStates(); |
|
} |
|
|
|
bool Ekf::collect_imu(imuSample &imu) |
|
{ |
|
imu.delta_ang(0) = imu.delta_ang(0) * _state.gyro_scale(0); |
|
imu.delta_ang(1) = imu.delta_ang(1) * _state.gyro_scale(1); |
|
imu.delta_ang(2) = imu.delta_ang(2) * _state.gyro_scale(2); |
|
|
|
imu.delta_ang -= _state.gyro_bias * imu.delta_ang_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f); |
|
imu.delta_vel(2) -= _state.accel_z_bias * imu.delta_vel_dt / (_dt_imu_avg > 0 ? _dt_imu_avg : 0.01f);; |
|
|
|
_imu_sample_new.delta_ang = imu.delta_ang; |
|
_imu_sample_new.delta_vel = imu.delta_vel; |
|
_imu_sample_new.delta_ang_dt = imu.delta_ang_dt; |
|
_imu_sample_new.delta_vel_dt = imu.delta_vel_dt; |
|
_imu_sample_new.time_us = imu.time_us; |
|
|
|
_imu_down_sampled.delta_ang_dt += imu.delta_ang_dt; |
|
_imu_down_sampled.delta_vel_dt += imu.delta_vel_dt; |
|
|
|
Quaternion delta_q; |
|
delta_q.rotate(imu.delta_ang); |
|
_q_down_sampled = _q_down_sampled * delta_q; |
|
_q_down_sampled.normalize(); |
|
|
|
matrix::Dcm<float> delta_R(delta_q.inversed()); |
|
_imu_down_sampled.delta_vel = delta_R * _imu_down_sampled.delta_vel; |
|
_imu_down_sampled.delta_vel += imu.delta_vel; |
|
|
|
if ((_dt_imu_avg * _imu_ticks >= (float)(FILTER_UPDATE_PERRIOD_MS) / 1000) || |
|
_dt_imu_avg * _imu_ticks >= 0.02f) { |
|
|
|
imu.delta_ang = _q_down_sampled.to_axis_angle(); |
|
imu.delta_vel = _imu_down_sampled.delta_vel; |
|
imu.delta_ang_dt = _imu_down_sampled.delta_ang_dt; |
|
imu.delta_vel_dt = _imu_down_sampled.delta_vel_dt; |
|
imu.time_us = imu.time_us; |
|
|
|
_imu_down_sampled.delta_ang.setZero(); |
|
_imu_down_sampled.delta_vel.setZero(); |
|
_imu_down_sampled.delta_ang_dt = 0.0f; |
|
_imu_down_sampled.delta_vel_dt = 0.0f; |
|
_q_down_sampled(0) = 1.0f; |
|
_q_down_sampled(1) = _q_down_sampled(2) = _q_down_sampled(3) = 0.0f; |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void Ekf::calculateOutputStates() |
|
{ |
|
imuSample imu_new = _imu_sample_new; |
|
Vector3f delta_angle; |
|
|
|
// Note: We do no not need to consider any bias or scale correction here |
|
// since the base class has already corrected the imu sample |
|
delta_angle(0) = imu_new.delta_ang(0); |
|
delta_angle(1) = imu_new.delta_ang(1); |
|
delta_angle(2) = imu_new.delta_ang(2); |
|
|
|
Vector3f delta_vel = imu_new.delta_vel; |
|
|
|
delta_angle += _delta_angle_corr; |
|
Quaternion dq; |
|
dq.from_axis_angle(delta_angle); |
|
|
|
_output_new.time_us = imu_new.time_us; |
|
_output_new.quat_nominal = dq * _output_new.quat_nominal; |
|
_output_new.quat_nominal.normalize(); |
|
|
|
matrix::Dcm<float> R_to_earth(_output_new.quat_nominal); |
|
|
|
Vector3f delta_vel_NED = R_to_earth * delta_vel + _delta_vel_corr; |
|
delta_vel_NED(2) += 9.81f * imu_new.delta_vel_dt; |
|
|
|
Vector3f vel_last = _output_new.vel; |
|
|
|
_output_new.vel += delta_vel_NED; |
|
|
|
_output_new.pos += (_output_new.vel + vel_last) * (imu_new.delta_vel_dt * 0.5f) + _vel_corr * imu_new.delta_vel_dt; |
|
|
|
if (_imu_updated) { |
|
_output_buffer.push(_output_new); |
|
_imu_updated = false; |
|
} |
|
|
|
_output_sample_delayed = _output_buffer.get_oldest(); |
|
|
|
Quaternion quat_inv = _state.quat_nominal.inversed(); |
|
Quaternion q_error = _output_sample_delayed.quat_nominal * quat_inv; |
|
q_error.normalize(); |
|
Vector3f delta_ang_error; |
|
|
|
float scalar; |
|
|
|
if (q_error(0) >= 0.0f) { |
|
scalar = -2.0f; |
|
|
|
} else { |
|
scalar = 2.0f; |
|
} |
|
|
|
delta_ang_error(0) = scalar * q_error(1); |
|
delta_ang_error(1) = scalar * q_error(2); |
|
delta_ang_error(2) = scalar * q_error(3); |
|
|
|
_delta_angle_corr = delta_ang_error * imu_new.delta_ang_dt; |
|
|
|
_delta_vel_corr = (_state.vel - _output_sample_delayed.vel) * imu_new.delta_vel_dt; |
|
|
|
_vel_corr = (_state.pos - _output_sample_delayed.pos); |
|
}
|
|
|