You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1197 lines
36 KiB
1197 lines
36 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Lorenz Meier <lm@inf.ethz.ch> |
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file sensors.c |
|
* Sensor readout process. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <fcntl.h> |
|
#include <sys/prctl.h> |
|
#include <poll.h> |
|
#include <nuttx/analog/adc.h> |
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
#include <stdbool.h> |
|
#include <stdio.h> |
|
#include <errno.h> |
|
#include <float.h> |
|
|
|
#include <arch/board/up_hrt.h> |
|
#include <arch/board/drv_bma180.h> |
|
#include <arch/board/drv_l3gd20.h> |
|
|
|
#include <drivers/drv_accel.h> |
|
#include <drivers/drv_gyro.h> |
|
#include <drivers/drv_mag.h> |
|
#include <drivers/drv_baro.h> |
|
|
|
#include <arch/board/up_adc.h> |
|
|
|
#include <systemlib/systemlib.h> |
|
#include <systemlib/param/param.h> |
|
#include <systemlib/err.h> |
|
|
|
#include <uORB/uORB.h> |
|
#include <uORB/topics/sensor_combined.h> |
|
#include <uORB/topics/rc_channels.h> |
|
#include <uORB/topics/manual_control_setpoint.h> |
|
#include <uORB/topics/vehicle_status.h> |
|
|
|
#include "sensors.h" |
|
|
|
#define errno *get_errno_ptr() |
|
|
|
#define SENSOR_INTERVAL_MICROSEC 2000 |
|
|
|
#define GYRO_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ |
|
#define ACC_HEALTH_COUNTER_LIMIT_ERROR 20 /* 40 ms downtime at 500 Hz update rate */ |
|
#define MAGN_HEALTH_COUNTER_LIMIT_ERROR 100 /* 1000 ms downtime at 100 Hz update rate */ |
|
#define BARO_HEALTH_COUNTER_LIMIT_ERROR 50 /* 500 ms downtime at 100 Hz update rate */ |
|
#define ADC_HEALTH_COUNTER_LIMIT_ERROR 10 /* 100 ms downtime at 100 Hz update rate */ |
|
|
|
#define GYRO_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define ACC_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define MAGN_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define BARO_HEALTH_COUNTER_LIMIT_OK 5 |
|
#define ADC_HEALTH_COUNTER_LIMIT_OK 5 |
|
|
|
#define ADC_BATTERY_VOLATGE_CHANNEL 10 |
|
|
|
#define BAT_VOL_INITIAL 12.f |
|
#define BAT_VOL_LOWPASS_1 0.99f |
|
#define BAT_VOL_LOWPASS_2 0.01f |
|
#define VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS 3.5f |
|
|
|
/* PPM Settings */ |
|
#define PPM_MIN 1000 |
|
#define PPM_MAX 2000 |
|
/* Internal resolution is 10000 */ |
|
#define PPM_SCALE 10000/((PPM_MAX-PPM_MIN)/2) |
|
|
|
#define PPM_MID (PPM_MIN+PPM_MAX)/2 |
|
|
|
static int sensors_timer_loop_counter = 0; |
|
|
|
/* File descriptors for all sensors */ |
|
static int fd_gyro = -1; |
|
static int fd_gyro_l3gd20 = -1; |
|
|
|
static bool thread_should_exit = false; |
|
static bool thread_running = false; |
|
static int sensors_task; |
|
|
|
static int fd_bma180 = -1; |
|
static int fd_magnetometer = -1; |
|
static int fd_barometer = -1; |
|
static int fd_adc = -1; |
|
static int fd_accelerometer = -1; |
|
|
|
/* Private functions declared static */ |
|
static void sensors_timer_loop(void *arg); |
|
|
|
#ifdef CONFIG_HRT_PPM |
|
extern uint16_t ppm_buffer[]; |
|
extern unsigned ppm_decoded_channels; |
|
extern uint64_t ppm_last_valid_decode; |
|
#endif |
|
|
|
/* ORB topic publishing our results */ |
|
static orb_advert_t sensor_pub; |
|
|
|
PARAM_DEFINE_FLOAT(SENSOR_GYRO_XOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_GYRO_YOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_GYRO_ZOFF, 0.0f); |
|
|
|
PARAM_DEFINE_FLOAT(SENSOR_MAG_XOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_MAG_YOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_MAG_ZOFF, 0.0f); |
|
|
|
PARAM_DEFINE_FLOAT(SENSOR_ACC_XOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_ACC_YOFF, 0.0f); |
|
PARAM_DEFINE_FLOAT(SENSOR_ACC_ZOFF, 0.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC1_MIN, 1000.0f); |
|
PARAM_DEFINE_FLOAT(RC1_TRIM, 1500.0f); |
|
PARAM_DEFINE_FLOAT(RC1_MAX, 2000.0f); |
|
PARAM_DEFINE_FLOAT(RC1_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC2_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC2_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC2_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC2_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC3_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC3_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC3_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC3_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC4_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC4_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC4_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC4_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC5_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC5_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC5_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC5_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC6_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC6_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC6_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC6_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC7_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC7_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC7_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC7_REV, 1.0f); |
|
|
|
PARAM_DEFINE_FLOAT(RC8_MIN, 1000); |
|
PARAM_DEFINE_FLOAT(RC8_TRIM, 1500); |
|
PARAM_DEFINE_FLOAT(RC8_MAX, 2000); |
|
PARAM_DEFINE_FLOAT(RC8_REV, 1.0f); |
|
|
|
PARAM_DEFINE_INT32(RC_TYPE, 1); // 1 = FUTABA |
|
|
|
PARAM_DEFINE_FLOAT(BAT_V_SCALING, -1.0f); |
|
|
|
PARAM_DEFINE_INT32(RC_MAP_ROLL, 1); |
|
PARAM_DEFINE_INT32(RC_MAP_PITCH, 2); |
|
PARAM_DEFINE_INT32(RC_MAP_THROTTLE, 3); |
|
PARAM_DEFINE_INT32(RC_MAP_YAW, 4); |
|
PARAM_DEFINE_INT32(RC_MAP_MODE_SW, 5); |
|
|
|
#define rc_max_chan_count 8 |
|
|
|
struct sensor_parameters { |
|
int min[rc_max_chan_count]; |
|
int trim[rc_max_chan_count]; |
|
int max[rc_max_chan_count]; |
|
int rev[rc_max_chan_count]; |
|
|
|
float gyro_offset[3]; |
|
float mag_offset[3]; |
|
float acc_offset[3]; |
|
|
|
int rc_type; |
|
|
|
int rc_map_roll; |
|
int rc_map_pitch; |
|
int rc_map_yaw; |
|
int rc_map_throttle; |
|
int rc_map_mode_sw; |
|
|
|
int battery_voltage_scaling; |
|
}; |
|
|
|
struct sensor_parameter_handles { |
|
param_t min[rc_max_chan_count]; |
|
param_t trim[rc_max_chan_count]; |
|
param_t max[rc_max_chan_count]; |
|
param_t rev[rc_max_chan_count]; |
|
param_t rc_type; |
|
|
|
param_t gyro_offset[3]; |
|
param_t mag_offset[3]; |
|
param_t acc_offset[3]; |
|
|
|
param_t rc_map_roll; |
|
param_t rc_map_pitch; |
|
param_t rc_map_yaw; |
|
param_t rc_map_throttle; |
|
param_t rc_map_mode_sw; |
|
|
|
param_t battery_voltage_scaling; |
|
}; |
|
|
|
/** |
|
* Sensor app start / stop handling function |
|
* |
|
* @ingroup apps |
|
*/ |
|
__EXPORT int sensors_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Sensor readout and publishing. |
|
* |
|
* This function reads all onboard sensors and publishes the sensor_combined topic. |
|
* |
|
* @see sensor_combined_s |
|
*/ |
|
int sensors_thread_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Print the usage |
|
*/ |
|
static void usage(const char *reason); |
|
|
|
/** |
|
* Initialize all parameter handles and values |
|
* |
|
*/ |
|
static int parameters_init(struct sensor_parameter_handles *h); |
|
|
|
/** |
|
* Update all parameters |
|
* |
|
*/ |
|
static int parameters_update(const struct sensor_parameter_handles *h, struct sensor_parameters *p); |
|
|
|
|
|
static int parameters_init(struct sensor_parameter_handles *h) |
|
{ |
|
/* min values */ |
|
h->min[0] = param_find("RC1_MIN"); |
|
h->min[1] = param_find("RC2_MIN"); |
|
h->min[2] = param_find("RC3_MIN"); |
|
h->min[3] = param_find("RC4_MIN"); |
|
h->min[4] = param_find("RC5_MIN"); |
|
h->min[5] = param_find("RC6_MIN"); |
|
h->min[6] = param_find("RC7_MIN"); |
|
h->min[7] = param_find("RC8_MIN"); |
|
|
|
/* trim values */ |
|
h->trim[0] = param_find("RC1_TRIM"); |
|
h->trim[1] = param_find("RC2_TRIM"); |
|
h->trim[2] = param_find("RC3_TRIM"); |
|
h->trim[3] = param_find("RC4_TRIM"); |
|
h->trim[4] = param_find("RC5_TRIM"); |
|
h->trim[5] = param_find("RC6_TRIM"); |
|
h->trim[6] = param_find("RC7_TRIM"); |
|
h->trim[7] = param_find("RC8_TRIM"); |
|
|
|
/* max values */ |
|
h->max[0] = param_find("RC1_MAX"); |
|
h->max[1] = param_find("RC2_MAX"); |
|
h->max[2] = param_find("RC3_MAX"); |
|
h->max[3] = param_find("RC4_MAX"); |
|
h->max[4] = param_find("RC5_MAX"); |
|
h->max[5] = param_find("RC6_MAX"); |
|
h->max[6] = param_find("RC7_MAX"); |
|
h->max[7] = param_find("RC8_MAX"); |
|
|
|
/* channel reverse */ |
|
h->rev[0] = param_find("RC1_REV"); |
|
h->rev[1] = param_find("RC2_REV"); |
|
h->rev[2] = param_find("RC3_REV"); |
|
h->rev[3] = param_find("RC4_REV"); |
|
h->rev[4] = param_find("RC5_REV"); |
|
h->rev[5] = param_find("RC6_REV"); |
|
h->rev[6] = param_find("RC7_REV"); |
|
h->rev[7] = param_find("RC8_REV"); |
|
|
|
h->rc_type = param_find("RC_TYPE"); |
|
|
|
h->rc_map_roll = param_find("RC_MAP_ROLL"); |
|
h->rc_map_pitch = param_find("RC_MAP_PITCH"); |
|
h->rc_map_yaw = param_find("RC_MAP_YAW"); |
|
h->rc_map_throttle = param_find("RC_MAP_THROTTLE"); |
|
h->rc_map_mode_sw = param_find("RC_MAP_MODE_SW"); |
|
|
|
/* gyro offsets */ |
|
h->gyro_offset[0] = param_find("SENSOR_GYRO_XOFF"); |
|
h->gyro_offset[1] = param_find("SENSOR_GYRO_YOFF"); |
|
h->gyro_offset[2] = param_find("SENSOR_GYRO_ZOFF"); |
|
|
|
/* accel offsets */ |
|
h->acc_offset[0] = param_find("SENSOR_ACC_XOFF"); |
|
h->acc_offset[1] = param_find("SENSOR_ACC_YOFF"); |
|
h->acc_offset[2] = param_find("SENSOR_ACC_ZOFF"); |
|
|
|
/* mag offsets */ |
|
h->mag_offset[0] = param_find("SENSOR_MAG_XOFF"); |
|
h->mag_offset[1] = param_find("SENSOR_MAG_YOFF"); |
|
h->mag_offset[2] = param_find("SENSOR_MAG_ZOFF"); |
|
|
|
h->battery_voltage_scaling = param_find("BAT_V_SCALING"); |
|
|
|
return OK; |
|
} |
|
|
|
static int parameters_update(const struct sensor_parameter_handles *h, struct sensor_parameters *p) |
|
{ |
|
const unsigned int nchans = 8; |
|
|
|
/* min values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(h->min[i], &(p->min[i])); |
|
} |
|
|
|
/* trim values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(h->trim[i], &(p->trim[i])); |
|
} |
|
|
|
/* max values */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(h->max[i], &(p->max[i])); |
|
} |
|
|
|
/* channel reverse */ |
|
for (unsigned int i = 0; i < nchans; i++) { |
|
param_get(h->rev[i], &(p->rev[i])); |
|
} |
|
|
|
/* remote control type */ |
|
param_get(h->rc_type, &(p->rc_type)); |
|
|
|
/* channel mapping */ |
|
param_get(h->rc_map_roll, &(p->rc_map_roll)); |
|
param_get(h->rc_map_pitch, &(p->rc_map_pitch)); |
|
param_get(h->rc_map_yaw, &(p->rc_map_yaw)); |
|
param_get(h->rc_map_throttle, &(p->rc_map_throttle)); |
|
param_get(h->rc_map_mode_sw, &(p->rc_map_mode_sw)); |
|
|
|
/* gyro offsets */ |
|
param_get(h->gyro_offset[0], &(p->gyro_offset[0])); |
|
param_get(h->gyro_offset[1], &(p->gyro_offset[1])); |
|
param_get(h->gyro_offset[2], &(p->gyro_offset[2])); |
|
|
|
/* accel offsets */ |
|
param_get(h->acc_offset[0], &(p->acc_offset[0])); |
|
param_get(h->acc_offset[1], &(p->acc_offset[1])); |
|
param_get(h->acc_offset[2], &(p->acc_offset[2])); |
|
|
|
/* mag offsets */ |
|
param_get(h->mag_offset[0], &(p->mag_offset[0])); |
|
param_get(h->mag_offset[1], &(p->mag_offset[1])); |
|
param_get(h->mag_offset[2], &(p->mag_offset[2])); |
|
|
|
/* scaling of ADC ticks to battery voltage */ |
|
param_get(h->battery_voltage_scaling, &(p->battery_voltage_scaling)); |
|
|
|
return OK; |
|
} |
|
|
|
/** |
|
* Initialize all sensor drivers. |
|
* |
|
* @return 0 on success, != 0 on failure |
|
*/ |
|
static int sensors_init(void) |
|
{ |
|
printf("[sensors] Sensor configuration..\n"); |
|
|
|
/* open magnetometer */ |
|
fd_magnetometer = open("/dev/mag", O_RDONLY); |
|
|
|
if (fd_magnetometer < 0) { |
|
fprintf(stderr, "[sensors] MAG open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
fflush(stderr); |
|
/* this sensor is critical, exit on failed init */ |
|
errno = ENOSYS; |
|
return ERROR; |
|
|
|
} else { |
|
printf("[sensors] MAG open ok\n"); |
|
// /* set the queue depth to 1 */ |
|
// if (OK != ioctl(fd_magnetometer, MAGIOCSQUEUEDEPTH, 1)) |
|
// warn("failed to set queue depth for mag"); |
|
|
|
/* start the sensor polling at 150Hz */ |
|
if (OK != ioctl(fd_magnetometer, MAGIOCSSAMPLERATE, 150)) |
|
warn("failed to set minimum 150Hz sample rate for mag"); |
|
} |
|
|
|
/* open barometer */ |
|
fd_barometer = open("/dev/baro", O_RDONLY); |
|
|
|
if (fd_barometer < 0) { |
|
fprintf(stderr, "[sensors] BARO open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
fflush(stderr); |
|
|
|
} else { |
|
printf("[sensors] BARO open ok\n"); |
|
// /* set the queue depth to 1 */ |
|
// if (OK != ioctl(fd_barometer, BAROIOCSQUEUEDEPTH, 1)) |
|
// warn("failed to set queue depth for baro"); |
|
|
|
// start the sensor polling at 100Hz |
|
// if (OK != ioctl(fd_barometer, BAROIOCSPOLLRATE, 100)) |
|
// warn("failed to set 100Hz poll rate for baro"); |
|
} |
|
|
|
/* open gyro */ |
|
fd_gyro = open("/dev/gyro", O_RDONLY); |
|
int errno_gyro = (int)*get_errno_ptr(); |
|
|
|
if (!(fd_gyro < 0)) { |
|
printf("[sensors] GYRO open ok\n"); |
|
// /* set the queue depth to 1 */ |
|
// if (OK != ioctl(fd_gyro, GYROIOCSQUEUEDEPTH, 1)) |
|
// warn("failed to set queue depth for gyro"); |
|
|
|
/* start the sensor polling at 500Hz */ |
|
if (OK != ioctl(fd_gyro, GYROIOCSSAMPLERATE, 500)) |
|
warn("failed to set minimum 500Hz sample rate for gyro"); |
|
} |
|
|
|
/* open accelerometer */ |
|
fd_accelerometer = open("/dev/accel", O_RDONLY); |
|
int errno_accelerometer = (int)*get_errno_ptr(); |
|
|
|
if (!(fd_accelerometer < 0)) { |
|
printf("[sensors] ACCEL open ok\n"); |
|
// /* set the queue depth to 1 */ |
|
// if (OK != ioctl(fd_accelerometer, ACCELIOCSQUEUEDEPTH, 1)) |
|
// warn("failed to set queue depth for accel"); |
|
|
|
/* start the sensor polling at 500Hz */ |
|
if (OK != ioctl(fd_accelerometer, ACCELIOCSSAMPLERATE, 500)) |
|
warn("failed to set minimum 500Hz poll rate for accel"); |
|
} |
|
|
|
/* only attempt to use BMA180 if main accel is not available */ |
|
int errno_bma180 = 0; |
|
if (fd_accelerometer < 0) { |
|
fd_bma180 = open("/dev/bma180", O_RDONLY); |
|
errno_bma180 = (int)*get_errno_ptr(); |
|
|
|
if (!(fd_bma180 < 0)) { |
|
printf("[sensors] ACCEL (BMA180) open ok\n"); |
|
} |
|
} else { |
|
fd_bma180 = -1; |
|
} |
|
|
|
/* only attempt to use L3GD20 is main gyro is not available */ |
|
int errno_gyro_l3gd20 = 0; |
|
if (fd_gyro < 0) { |
|
fd_gyro_l3gd20 = open("/dev/l3gd20", O_RDONLY); |
|
int errno_gyro_l3gd20 = (int)*get_errno_ptr(); |
|
|
|
if (!(fd_gyro_l3gd20 < 0)) { |
|
printf("[sensors] GYRO (L3GD20) open ok\n"); |
|
} |
|
|
|
if (ioctl(fd_gyro_l3gd20 , L3GD20_SETRATE, L3GD20_RATE_760HZ_LP_30HZ) || |
|
ioctl(fd_gyro_l3gd20 , L3GD20_SETRANGE, L3GD20_RANGE_500DPS)) { |
|
fprintf(stderr, "[sensors] L3GD20 configuration (ioctl) fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
fflush(stderr); |
|
/* this sensor is critical, exit on failed init */ |
|
errno = ENOSYS; |
|
return ERROR; |
|
|
|
} else { |
|
printf("[sensors] L3GD20 configuration ok\n"); |
|
} |
|
} else { |
|
fd_gyro_l3gd20 = -1; |
|
} |
|
|
|
/* fail if no accelerometer is available */ |
|
if (fd_accelerometer < 0 && fd_bma180 < 0) { |
|
/* print error message only if both failed, discard message else at all to not confuse users */ |
|
if (fd_accelerometer < 0) { |
|
fprintf(stderr, "[sensors] ACCEL: open fail (err #%d): %s\n", errno_accelerometer, strerror(errno_accelerometer)); |
|
fflush(stderr); |
|
/* this sensor is redundant with BMA180 */ |
|
} |
|
|
|
if (fd_bma180 < 0) { |
|
fprintf(stderr, "[sensors] BMA180: open fail (err #%d): %s\n", errno_bma180, strerror(errno_bma180)); |
|
fflush(stderr); |
|
/* this sensor is redundant with MPU-6000 */ |
|
} |
|
|
|
errno = ENOSYS; |
|
return ERROR; |
|
} |
|
|
|
/* fail if no gyro is available */ |
|
if (fd_gyro < 0 && fd_gyro_l3gd20 < 0) { |
|
/* print error message only if both failed, discard message else at all to not confuse users */ |
|
if (fd_gyro < 0) { |
|
fprintf(stderr, "[sensors] GYRO: open fail (err #%d): %s\n", errno_gyro, strerror(errno_gyro)); |
|
fflush(stderr); |
|
/* this sensor is redundant with BMA180 */ |
|
} |
|
|
|
if (fd_gyro_l3gd20 < 0) { |
|
fprintf(stderr, "[sensors] L3GD20 open fail (err #%d): %s\n", errno_gyro_l3gd20, strerror(errno_gyro_l3gd20)); |
|
fflush(stderr); |
|
/* this sensor is critical, exit on failed init */ |
|
} |
|
|
|
errno = ENOSYS; |
|
return ERROR; |
|
} |
|
|
|
/* open adc */ |
|
fd_adc = open("/dev/adc0", O_RDONLY | O_NONBLOCK); |
|
|
|
if (fd_adc < 0) { |
|
fprintf(stderr, "[sensors] ADC: open fail (err #%d): %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
fflush(stderr); |
|
/* this sensor is critical, exit on failed init */ |
|
errno = ENOSYS; |
|
return ERROR; |
|
|
|
} else { |
|
printf("[sensors] ADC open ok\n"); |
|
} |
|
|
|
printf("[sensors] All sensors configured\n"); |
|
return OK; |
|
} |
|
|
|
int sensors_thread_main(int argc, char *argv[]) |
|
{ |
|
/* inform about start */ |
|
printf("[sensors] Initializing..\n"); |
|
fflush(stdout); |
|
|
|
int ret = OK; |
|
|
|
/* start sensor reading */ |
|
if (sensors_init() != OK) { |
|
fprintf(stderr, "[sensors] ERROR: Failed to initialize all sensors, exiting.\n"); |
|
/* Clean up */ |
|
close(fd_gyro); |
|
close(fd_bma180); |
|
close(fd_gyro_l3gd20); |
|
close(fd_magnetometer); |
|
close(fd_barometer); |
|
close(fd_adc); |
|
|
|
exit(1); |
|
} else { |
|
/* flush stdout from init routine */ |
|
fflush(stdout); |
|
} |
|
|
|
/* initialize parameters */ |
|
struct sensor_parameters rcp; |
|
struct sensor_parameter_handles rch; |
|
parameters_init(&rch); |
|
parameters_update(&rch, &rcp); |
|
|
|
// bool gyro_healthy = false; |
|
// bool acc_healthy = false; |
|
// bool magn_healthy = false; |
|
// bool baro_healthy = false; |
|
// bool adc_healthy = false; |
|
|
|
bool hil_enabled = false; /**< HIL is disabled by default */ |
|
bool publishing = false; /**< the app is not publishing by default, only if HIL is disabled on first run */ |
|
|
|
// unsigned int mag_fail_count = 0; |
|
// unsigned int mag_success_count = 0; |
|
|
|
// unsigned int baro_fail_count = 0; |
|
// unsigned int baro_success_count = 0; |
|
|
|
// unsigned int gyro_fail_count = 0; |
|
// unsigned int gyro_success_count = 0; |
|
|
|
// unsigned int acc_fail_count = 0; |
|
// unsigned int acc_success_count = 0; |
|
|
|
// unsigned int adc_fail_count = 0; |
|
// unsigned int adc_success_count = 0; |
|
|
|
/* for PX4FMU 1.5 compatibility */ |
|
int16_t buf_accelerometer[3]; |
|
int16_t buf_gyro[3]; |
|
|
|
// bool mag_calibration_enabled = false; |
|
|
|
#pragma pack(push,1) |
|
struct adc_msg4_s { |
|
uint8_t am_channel1; /**< The 8-bit ADC Channel 1 */ |
|
int32_t am_data1; /**< ADC convert result 1 (4 bytes) */ |
|
uint8_t am_channel2; /**< The 8-bit ADC Channel 2 */ |
|
int32_t am_data2; /**< ADC convert result 2 (4 bytes) */ |
|
uint8_t am_channel3; /**< The 8-bit ADC Channel 3 */ |
|
int32_t am_data3; /**< ADC convert result 3 (4 bytes) */ |
|
uint8_t am_channel4; /**< The 8-bit ADC Channel 4 */ |
|
int32_t am_data4; /**< ADC convert result 4 (4 bytes) */ |
|
}; |
|
#pragma pack(pop) |
|
|
|
struct adc_msg4_s buf_adc; |
|
size_t adc_readsize = 1 * sizeof(struct adc_msg4_s); |
|
|
|
float battery_voltage_conversion; |
|
battery_voltage_conversion = rcp.battery_voltage_scaling; |
|
|
|
if (-1 == (int)battery_voltage_conversion) { |
|
/* default is conversion factor for the PX4IO / PX4IOAR board, the factor for PX4FMU standalone is different */ |
|
battery_voltage_conversion = 3.3f * 52.0f / 5.0f / 4095.0f; |
|
} |
|
|
|
/* initialize to 100 to execute immediately */ |
|
int paramcounter = 100; |
|
int read_loop_counter = 0; |
|
|
|
/* Empty sensor buffers, avoid junk values */ |
|
/* Read first two values of each sensor into void */ |
|
if (fd_bma180 > 0)(void)read(fd_bma180, buf_accelerometer, sizeof(buf_accelerometer)); |
|
if (fd_gyro_l3gd20 > 0)(void)read(fd_gyro_l3gd20, &buf_gyro, sizeof(buf_gyro)); |
|
|
|
/* ORB sensor subscriptions */ |
|
int gyro_sub = orb_subscribe(ORB_ID(sensor_gyro)); |
|
int accel_sub = orb_subscribe(ORB_ID(sensor_accel)); |
|
int mag_sub = orb_subscribe(ORB_ID(sensor_mag)); |
|
int baro_sub = orb_subscribe(ORB_ID(sensor_baro)); |
|
|
|
struct gyro_report gyro_report; |
|
struct accel_report accel_report; |
|
struct mag_report mag_report; |
|
struct baro_report baro_report; |
|
|
|
struct sensor_combined_s raw = { |
|
.timestamp = hrt_absolute_time(), |
|
.gyro_raw = {gyro_report.x_raw, gyro_report.y_raw, gyro_report.z_raw}, |
|
.gyro_raw_counter = 0, |
|
.gyro_rad_s = {gyro_report.x, gyro_report.y, gyro_report.z}, |
|
.accelerometer_raw = {accel_report.x_raw, accel_report.y_raw, accel_report.z_raw}, |
|
.accelerometer_raw_counter = 0, |
|
.accelerometer_m_s2 = {accel_report.x, accel_report.y, accel_report.z}, |
|
.magnetometer_raw = {mag_report.x_raw, mag_report.y_raw, mag_report.z_raw}, |
|
.magnetometer_ga = {mag_report.x, mag_report.y, mag_report.z}, |
|
.magnetometer_raw_counter = 0, |
|
.baro_pres_mbar = baro_report.pressure, |
|
.baro_alt_meter = baro_report.altitude, |
|
.baro_temp_celcius = baro_report.temperature, |
|
.baro_raw_counter = 0, |
|
.battery_voltage_v = BAT_VOL_INITIAL, |
|
.adc_voltage_v = {0.9f , 0.0f , 0.0f}, |
|
.battery_voltage_counter = 0, |
|
.battery_voltage_valid = false, |
|
}; |
|
|
|
/* advertise the sensor_combined topic and make the initial publication */ |
|
sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw); |
|
if (sensor_pub < 0) { |
|
fprintf(stderr, "[sensors] ERROR: orb_advertise for topic sensor_combined failed.\n"); |
|
} else { |
|
publishing = true; |
|
} |
|
|
|
/* advertise the manual_control topic */ |
|
struct manual_control_setpoint_s manual_control = { .mode = ROLLPOS_PITCHPOS_YAWRATE_THROTTLE, |
|
.roll = 0.0f, |
|
.pitch = 0.0f, |
|
.yaw = 0.0f, |
|
.throttle = 0.0f }; |
|
|
|
orb_advert_t manual_control_pub = orb_advertise(ORB_ID(manual_control_setpoint), &manual_control); |
|
|
|
if (manual_control_pub < 0) { |
|
fprintf(stderr, "[sensors] ERROR: orb_advertise for topic manual_control_setpoint failed.\n"); |
|
} |
|
|
|
/* advertise the rc topic */ |
|
struct rc_channels_s rc; |
|
memset(&rc, 0, sizeof(rc)); |
|
orb_advert_t rc_pub = orb_advertise(ORB_ID(rc_channels), &rc); |
|
|
|
if (rc_pub < 0) { |
|
fprintf(stderr, "[sensors] ERROR: orb_advertise for topic rc_channels failed.\n"); |
|
} |
|
|
|
/* subscribe to system status */ |
|
struct vehicle_status_s vstatus; |
|
memset(&vstatus, 0, sizeof(vstatus)); |
|
int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status)); |
|
|
|
thread_running = true; |
|
|
|
while (!thread_should_exit) { |
|
|
|
bool gyro_updated = false; |
|
|
|
struct pollfd fds[4]; |
|
|
|
/* wait for data to be ready */ |
|
fds[0].fd = gyro_sub; |
|
fds[0].events = POLLIN; |
|
|
|
fds[1].fd = accel_sub; |
|
fds[1].events = POLLIN; |
|
|
|
fds[2].fd = mag_sub; |
|
fds[2].events = POLLIN; |
|
|
|
fds[3].fd = baro_sub; |
|
fds[3].events = POLLIN; |
|
|
|
int pret = poll(fds, 4, 500); |
|
|
|
if (pret <= 0) { |
|
/* do silently nothing */ |
|
} else { |
|
|
|
/* store the time closest to all measurements */ |
|
uint64_t current_time = hrt_absolute_time(); |
|
raw.timestamp = current_time; |
|
|
|
/* Update at 5 Hz */ |
|
if (paramcounter == ((unsigned int)(1000000 / SENSOR_INTERVAL_MICROSEC)/5)) { |
|
|
|
/* Check HIL state */ |
|
orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus); |
|
|
|
/* switching from non-HIL to HIL mode */ |
|
//printf("[sensors] Vehicle mode: %i \t AND: %i, HIL: %i\n", vstatus.mode, vstatus.mode & VEHICLE_MODE_FLAG_HIL_ENABLED, hil_enabled); |
|
if (vstatus.flag_hil_enabled && !hil_enabled) { |
|
hil_enabled = true; |
|
publishing = false; |
|
|
|
int sens_ret = close(sensor_pub); |
|
if (sens_ret == OK) { |
|
printf("[sensors] Closing sensor pub OK\n"); |
|
} else { |
|
printf("[sensors] FAILED Closing sensor pub, result: %i \n", sens_ret); |
|
} |
|
|
|
/* switching from HIL to non-HIL mode */ |
|
|
|
} else if (!publishing && !hil_enabled) { |
|
/* advertise the topic and make the initial publication */ |
|
sensor_pub = orb_advertise(ORB_ID(sensor_combined), &raw); |
|
hil_enabled = false; |
|
publishing = true; |
|
} |
|
|
|
/* update parameters */ |
|
parameters_update(&rch, &rcp); |
|
|
|
/* Update RC scalings and function mappings */ |
|
rc.chan[0].scaling_factor = (1.0f / ((rcp.max[0] - rcp.min[0]) / 2.0f) * rcp.rev[0]); |
|
rc.chan[0].mid = rcp.trim[0]; |
|
|
|
rc.chan[1].scaling_factor = (1.0f / ((rcp.max[1] - rcp.min[1]) / 2.0f) * rcp.rev[1]); |
|
rc.chan[1].mid = rcp.trim[1]; |
|
|
|
rc.chan[2].scaling_factor = (1.0f / ((rcp.max[2] - rcp.min[2]) / 2.0f) * rcp.rev[2]); |
|
rc.chan[2].mid = rcp.trim[2]; |
|
|
|
rc.chan[3].scaling_factor = (1.0f / ((rcp.max[3] - rcp.min[3]) / 2.0f) * rcp.rev[3]); |
|
rc.chan[3].mid = rcp.trim[3]; |
|
|
|
rc.chan[4].scaling_factor = (1.0f / ((rcp.max[4] - rcp.min[4]) / 2.0f) * rcp.rev[4]); |
|
rc.chan[4].mid = rcp.trim[4]; |
|
|
|
rc.chan[5].scaling_factor = (1.0f / ((rcp.max[5] - rcp.min[5]) / 2.0f) * rcp.rev[5]); |
|
rc.chan[5].mid = rcp.trim[5]; |
|
|
|
rc.chan[6].scaling_factor = (1.0f / ((rcp.max[6] - rcp.min[6]) / 2.0f) * rcp.rev[6]); |
|
rc.chan[6].mid = rcp.trim[6]; |
|
|
|
rc.chan[7].scaling_factor = (1.0f / ((rcp.max[7] - rcp.min[7]) / 2.0f) * rcp.rev[7]); |
|
rc.chan[7].mid = rcp.trim[7]; |
|
|
|
rc.function[0] = rcp.rc_map_throttle - 1; |
|
rc.function[1] = rcp.rc_map_roll - 1; |
|
rc.function[2] = rcp.rc_map_pitch - 1; |
|
rc.function[3] = rcp.rc_map_yaw - 1; |
|
rc.function[4] = rcp.rc_map_mode_sw - 1; |
|
|
|
paramcounter = 0; |
|
} |
|
paramcounter++; |
|
|
|
/* --- GYRO --- */ |
|
if (fds[0].revents & POLLIN) { |
|
|
|
orb_copy(ORB_ID(sensor_gyro), gyro_sub, &gyro_report); |
|
|
|
raw.gyro_rad_s[0] = gyro_report.x; |
|
raw.gyro_rad_s[1] = gyro_report.y; |
|
raw.gyro_rad_s[2] = gyro_report.z; |
|
|
|
raw.gyro_raw[0] = gyro_report.x_raw; |
|
raw.gyro_raw[1] = gyro_report.y_raw; |
|
raw.gyro_raw[2] = gyro_report.z_raw; |
|
|
|
raw.gyro_raw_counter++; |
|
/* gyro is clocking synchronous data output */ |
|
gyro_updated = true; |
|
} |
|
|
|
/* --- ACCEL --- */ |
|
if (fds[1].revents & POLLIN) { |
|
|
|
orb_copy(ORB_ID(sensor_accel), accel_sub, &accel_report); |
|
|
|
raw.accelerometer_m_s2[0] = accel_report.x; |
|
raw.accelerometer_m_s2[1] = accel_report.y; |
|
raw.accelerometer_m_s2[2] = accel_report.z; |
|
|
|
raw.accelerometer_raw[0] = accel_report.x_raw; |
|
raw.accelerometer_raw[1] = accel_report.y_raw; |
|
raw.accelerometer_raw[2] = accel_report.z_raw; |
|
|
|
raw.accelerometer_raw_counter++; |
|
} |
|
|
|
/* --- MAG --- */ |
|
if (fds[2].revents & POLLIN) { |
|
|
|
orb_copy(ORB_ID(sensor_mag), mag_sub, &mag_report); |
|
|
|
raw.magnetometer_ga[0] = mag_report.x; |
|
raw.magnetometer_ga[1] = mag_report.y; |
|
raw.magnetometer_ga[2] = mag_report.z; |
|
|
|
raw.magnetometer_raw[0] = mag_report.x_raw; |
|
raw.magnetometer_raw[1] = mag_report.y_raw; |
|
raw.magnetometer_raw[2] = mag_report.z_raw; |
|
|
|
raw.magnetometer_raw_counter++; |
|
} |
|
|
|
/* --- BARO --- */ |
|
if (fds[3].revents & POLLIN) { |
|
|
|
orb_copy(ORB_ID(sensor_baro), baro_sub, &baro_report); |
|
|
|
raw.baro_pres_mbar = baro_report.pressure; // Pressure in mbar |
|
raw.baro_alt_meter = baro_report.altitude; // Altitude in meters |
|
raw.baro_temp_celcius = baro_report.temperature; // Temperature in degrees celcius |
|
|
|
raw.baro_raw_counter++; |
|
} |
|
|
|
// /* read BMA180. If the MPU-6000 is present, the BMA180 file descriptor won't be open */ |
|
// if (fd_bma180 > 0) { |
|
// /* try reading acc */ |
|
// uint64_t start_acc = hrt_absolute_time(); |
|
// ret_accelerometer = read(fd_bma180, buf_accelerometer, 6); |
|
|
|
// /* ACCELEROMETER */ |
|
// if (ret_accelerometer != 6) { |
|
// acc_fail_count++; |
|
|
|
// if ((acc_fail_count % 500) == 0 || (acc_fail_count > 20 && acc_fail_count < 40)) { |
|
// fprintf(stderr, "[sensors] BMA180 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
// } |
|
|
|
// if (acc_healthy && acc_fail_count >= ACC_HEALTH_COUNTER_LIMIT_ERROR) { |
|
// // global_data_send_subsystem_info(&acc_present_enabled); |
|
// gyro_healthy = false; |
|
// acc_success_count = 0; |
|
// } |
|
|
|
// } else { |
|
// acc_success_count++; |
|
|
|
// if (!acc_healthy && acc_success_count >= ACC_HEALTH_COUNTER_LIMIT_OK) { |
|
|
|
// // global_data_send_subsystem_info(&acc_present_enabled_healthy); |
|
// acc_healthy = true; |
|
// acc_fail_count = 0; |
|
|
|
// } |
|
|
|
// acc_updated = true; |
|
// } |
|
|
|
// int acctime = hrt_absolute_time() - start_acc; |
|
// if (acctime > 500) printf("ACC: %d us\n", acctime); |
|
// } |
|
|
|
|
|
// /* ACCELEROMETER */ |
|
// if (acc_updated) { |
|
// /* copy sensor readings to global data and transform coordinates into px4fmu board frame */ |
|
|
|
// if (fd_bma180 > 0) { |
|
|
|
// /* assign negated value, except for -SHORT_MAX, as it would wrap there */ |
|
// raw.accelerometer_raw[0] = (buf_accelerometer[1] == -32768) ? 32767 : -buf_accelerometer[1]; // x of the board is -y of the sensor |
|
// raw.accelerometer_raw[1] = (buf_accelerometer[0] == -32768) ? -32767 : buf_accelerometer[0]; // y on the board is x of the sensor |
|
// raw.accelerometer_raw[2] = (buf_accelerometer[2] == -32768) ? -32767 : buf_accelerometer[2]; // z of the board is z of the sensor |
|
|
|
|
|
// // XXX read range from sensor |
|
// float range_g = 4.0f; |
|
// /* scale from 14 bit to m/s2 */ |
|
// raw.accelerometer_m_s2[0] = (((raw.accelerometer_raw[0] - rcp.acc_offset[0]) * range_g) / 8192.0f) / 9.81f; |
|
// raw.accelerometer_m_s2[1] = (((raw.accelerometer_raw[1] - rcp.acc_offset[1]) * range_g) / 8192.0f) / 9.81f; |
|
// raw.accelerometer_m_s2[2] = (((raw.accelerometer_raw[2] - rcp.acc_offset[2]) * range_g) / 8192.0f) / 9.81f; |
|
|
|
// raw.accelerometer_raw_counter++; |
|
// } |
|
// } |
|
|
|
// if (fd_gyro_l3gd20 > 0) { |
|
// /* try reading gyro */ |
|
// uint64_t start_gyro = hrt_absolute_time(); |
|
// ret_gyro = read(fd_gyro, buf_gyro_l3gd20, sizeof(buf_gyro_l3gd20)); |
|
// int gyrotime = hrt_absolute_time() - start_gyro; |
|
|
|
// if (gyrotime > 500) printf("L3GD20 GYRO (pure read): %d us\n", gyrotime); |
|
|
|
// /* GYROSCOPE */ |
|
// if (ret_gyro != sizeof(buf_gyro)) { |
|
// gyro_fail_count++; |
|
|
|
// if ((((gyro_fail_count % 20) == 0) || (gyro_fail_count > 20 && gyro_fail_count < 100)) && (int)*get_errno_ptr() != EAGAIN) { |
|
// fprintf(stderr, "[sensors] L3GD20 ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
// } |
|
|
|
// if (gyro_healthy && gyro_fail_count >= GYRO_HEALTH_COUNTER_LIMIT_ERROR) { |
|
// // global_data_send_subsystem_info(&gyro_present_enabled); |
|
// gyro_healthy = false; |
|
// gyro_success_count = 0; |
|
// } |
|
|
|
// } else { |
|
// gyro_success_count++; |
|
|
|
// if (!gyro_healthy && gyro_success_count >= GYRO_HEALTH_COUNTER_LIMIT_OK) { |
|
// // global_data_send_subsystem_info(&gyro_present_enabled_healthy); |
|
// gyro_healthy = true; |
|
// gyro_fail_count = 0; |
|
|
|
// } |
|
|
|
// gyro_updated = true; |
|
// } |
|
|
|
// gyrotime = hrt_absolute_time() - start_gyro; |
|
|
|
// if (gyrotime > 500) printf("L3GD20 GYRO (complete): %d us\n", gyrotime); |
|
// } |
|
|
|
/* GYROSCOPE */ |
|
// if (gyro_updated) { |
|
// /* copy sensor readings to global data and transform coordinates into px4fmu board frame */ |
|
|
|
// raw.gyro_raw[0] = ((buf_gyro[1] == -32768) ? -32768 : buf_gyro[1]); // x of the board is y of the sensor |
|
// /* assign negated value, except for -SHORT_MAX, as it would wrap there */ |
|
// raw.gyro_raw[1] = ((buf_gyro[0] == -32768) ? 32767 : -buf_gyro[0]); // y on the board is -x of the sensor |
|
// raw.gyro_raw[2] = ((buf_gyro[2] == -32768) ? -32768 : buf_gyro[2]); // z of the board is z of the sensor |
|
|
|
// /* scale measurements */ |
|
// // XXX request scaling from driver instead of hardcoding it |
|
// /* scaling calculated as: raw * (1/(32768*(500/180*PI))) */ |
|
// raw.gyro_rad_s[0] = (raw.gyro_raw[0] - rcp.gyro_offset[0]) * 0.000266316109f; |
|
// raw.gyro_rad_s[1] = (raw.gyro_raw[1] - rcp.gyro_offset[1]) * 0.000266316109f; |
|
// raw.gyro_rad_s[2] = (raw.gyro_raw[2] - rcp.gyro_offset[2]) * 0.000266316109f; |
|
|
|
// raw.gyro_raw_counter++; |
|
// } |
|
|
|
static uint64_t last_adc = 0; |
|
/* ADC */ |
|
if (hrt_absolute_time() - last_adc >= 10000) { |
|
int ret_adc = read(fd_adc, &buf_adc, adc_readsize); |
|
int nsamples_adc = ret_adc / sizeof(struct adc_msg_s); |
|
|
|
// if (ret_adc < 0 || ((int)(nsamples_adc * sizeof(struct adc_msg_s))) != ret_adc) { |
|
// adc_fail_count++; |
|
|
|
// if (((adc_fail_count % 20) == 0 || adc_fail_count < 10) && (int)*get_errno_ptr() != EAGAIN) { |
|
// fprintf(stderr, "[sensors] ADC ERROR #%d: %s\n", (int)*get_errno_ptr(), strerror((int)*get_errno_ptr())); |
|
// } |
|
|
|
// if (adc_healthy && adc_fail_count >= ADC_HEALTH_COUNTER_LIMIT_ERROR) { |
|
// adc_healthy = false; |
|
// adc_success_count = 0; |
|
// } |
|
|
|
// } else { |
|
// adc_success_count++; |
|
|
|
// if (!adc_healthy && adc_success_count >= ADC_HEALTH_COUNTER_LIMIT_OK) { |
|
// adc_healthy = true; |
|
// adc_fail_count = 0; |
|
// } |
|
|
|
// adc_updated = true; |
|
// } |
|
|
|
if (ADC_BATTERY_VOLATGE_CHANNEL == buf_adc.am_channel1) { |
|
/* Voltage in volts */ |
|
raw.battery_voltage_v = (BAT_VOL_LOWPASS_1 * (raw.battery_voltage_v + BAT_VOL_LOWPASS_2 * (buf_adc.am_data1 * battery_voltage_conversion))); |
|
|
|
if ((buf_adc.am_data1 * battery_voltage_conversion) < VOLTAGE_BATTERY_IGNORE_THRESHOLD_VOLTS) { |
|
raw.battery_voltage_valid = false; |
|
raw.battery_voltage_v = 0.f; |
|
|
|
} else { |
|
raw.battery_voltage_valid = true; |
|
} |
|
|
|
raw.battery_voltage_counter++; |
|
} |
|
|
|
last_adc = hrt_absolute_time(); |
|
} |
|
|
|
/* Inform other processes that new data is available to copy */ |
|
if (gyro_updated && publishing) { |
|
/* Values changed, publish */ |
|
orb_publish(ORB_ID(sensor_combined), sensor_pub, &raw); |
|
} |
|
|
|
#ifdef CONFIG_HRT_PPM |
|
static uint64_t last_ppm = 0; |
|
|
|
/* PPM */ |
|
if (hrt_absolute_time() - last_ppm >= 10000) { |
|
|
|
/* require at least two channels |
|
* to consider the signal valid |
|
* check that decoded measurement is up to date |
|
*/ |
|
if (ppm_decoded_channels > 1 && (hrt_absolute_time() - ppm_last_valid_decode) < 45000) { |
|
/* Read out values from HRT */ |
|
for (unsigned int i = 0; i < ppm_decoded_channels; i++) { |
|
rc.chan[i].raw = ppm_buffer[i]; |
|
/* Set the range to +-, then scale up */ |
|
rc.chan[i].scale = (ppm_buffer[i] - rc.chan[i].mid) * rc.chan[i].scaling_factor * 10000; |
|
rc.chan[i].scaled = (ppm_buffer[i] - rc.chan[i].mid) * rc.chan[i].scaling_factor; |
|
} |
|
|
|
rc.chan_count = ppm_decoded_channels; |
|
rc.timestamp = ppm_last_valid_decode; |
|
|
|
/* roll input */ |
|
manual_control.roll = rc.chan[rc.function[ROLL]].scaled; |
|
if (manual_control.roll < -1.0f) manual_control.roll = -1.0f; |
|
if (manual_control.roll > 1.0f) manual_control.roll = 1.0f; |
|
|
|
/* pitch input */ |
|
manual_control.pitch = rc.chan[rc.function[PITCH]].scaled; |
|
if (manual_control.pitch < -1.0f) manual_control.pitch = -1.0f; |
|
if (manual_control.pitch > 1.0f) manual_control.pitch = 1.0f; |
|
|
|
/* yaw input */ |
|
manual_control.yaw = rc.chan[rc.function[YAW]].scaled; |
|
if (manual_control.yaw < -1.0f) manual_control.yaw = -1.0f; |
|
if (manual_control.yaw > 1.0f) manual_control.yaw = 1.0f; |
|
|
|
/* throttle input */ |
|
manual_control.throttle = (rc.chan[rc.function[THROTTLE]].scaled+1.0f)/2.0f; |
|
if (manual_control.throttle < 0.0f) manual_control.throttle = 0.0f; |
|
if (manual_control.throttle > 1.0f) manual_control.throttle = 1.0f; |
|
|
|
/* mode switch input */ |
|
manual_control.override_mode_switch = rc.chan[rc.function[OVERRIDE]].scaled; |
|
if (manual_control.override_mode_switch < -1.0f) manual_control.override_mode_switch = -1.0f; |
|
if (manual_control.override_mode_switch > 1.0f) manual_control.override_mode_switch = 1.0f; |
|
|
|
orb_publish(ORB_ID(rc_channels), rc_pub, &rc); |
|
orb_publish(ORB_ID(manual_control_setpoint), manual_control_pub, &manual_control); |
|
|
|
} |
|
last_ppm = hrt_absolute_time(); |
|
} |
|
#endif |
|
|
|
read_loop_counter++; |
|
} |
|
} |
|
|
|
printf("[sensors] sensor readout stopped\n"); |
|
|
|
close(fd_gyro); |
|
close(fd_magnetometer); |
|
close(fd_barometer); |
|
close(fd_adc); |
|
|
|
/* maintained for backwards-compatibility with v1.5 */ |
|
close(fd_gyro_l3gd20); |
|
close(fd_bma180); |
|
|
|
close(gyro_sub); |
|
close(accel_sub); |
|
close(mag_sub); |
|
close(baro_sub); |
|
|
|
printf("[sensors] exiting.\n"); |
|
|
|
thread_running = false; |
|
|
|
return ret; |
|
} |
|
|
|
static void |
|
usage(const char *reason) |
|
{ |
|
if (reason) |
|
fprintf(stderr, "%s\n", reason); |
|
fprintf(stderr, "usage: sensors {start|stop|status}\n"); |
|
exit(1); |
|
} |
|
|
|
int sensors_main(int argc, char *argv[]) |
|
{ |
|
if (argc < 1) |
|
usage("missing command"); |
|
|
|
if (!strcmp(argv[1], "start")) { |
|
|
|
if (thread_running) { |
|
printf("sensors app already running\n"); |
|
} else { |
|
thread_should_exit = false; |
|
sensors_task = task_create("sensors", SCHED_PRIORITY_MAX - 5, 4096, sensors_thread_main, (argv) ? (const char **)&argv[2] : (const char **)NULL); |
|
} |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "stop")) { |
|
if (!thread_running) { |
|
printf("sensors app not started\n"); |
|
} else { |
|
printf("stopping sensors app\n"); |
|
thread_should_exit = true; |
|
} |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "status")) { |
|
if (thread_running) { |
|
printf("\tsensors app is running\n"); |
|
} else { |
|
printf("\tsensors app not started\n"); |
|
} |
|
exit(0); |
|
} |
|
|
|
usage("unrecognized command"); |
|
exit(1); |
|
} |
|
|
|
|