You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

136 lines
5.8 KiB

#pragma once
#include <geo/geo.h>
#include <matrix/math.hpp>
#include <mathlib/mathlib.h>
#include "common.h"
#include "utils.hpp"
using matrix::AxisAnglef;
using matrix::Dcmf;
using matrix::Eulerf;
using matrix::Matrix3f;
using matrix::Quatf;
using matrix::Vector2f;
using matrix::Vector3f;
using matrix::wrap_pi;
static constexpr uint8_t N_MODELS_EKFGSF = 5;
// Required math constants
static constexpr float _m_2pi_inv = 0.159154943f;
static constexpr float _m_pi = 3.14159265f;
static constexpr float _m_pi2 = 1.57079632f;
using namespace estimator;
class EKFGSF_yaw
{
public:
EKFGSF_yaw();
// Update Filter States - this should be called whenever new IMU data is available
void update(const imuSample &imu_sample,
bool run_EKF, // set to true when flying or movement is suitable for yaw estimation
float airspeed, // true airspeed used for centripetal accel compensation - set to 0 when not required.
const Vector3f &imu_gyro_bias); // estimated rate gyro bias (rad/sec)
void setVelocity(const Vector2f &velocity, // NE velocity measurement (m/s)
float accuracy); // 1-sigma accuracy of velocity measurement (m/s)
// get solution data for logging
bool getLogData(float *yaw_composite,
float *yaw_composite_variance,
float yaw[N_MODELS_EKFGSF],
float innov_VN[N_MODELS_EKFGSF],
float innov_VE[N_MODELS_EKFGSF],
float weight[N_MODELS_EKFGSF]);
// get yaw estimate and the corresponding variance
// return false if no yaw estimate available
bool getYawData(float *yaw, float *yaw_variance);
private:
// Parameters - these could be made tuneable
const float _gyro_noise{1.0e-1f}; // yaw rate noise used for covariance prediction (rad/sec)
const float _accel_noise{2.0f}; // horizontal accel noise used for covariance prediction (m/sec**2)
const float _tilt_gain{0.2f}; // gain from tilt error to gyro correction for complementary filter (1/sec)
const float _gyro_bias_gain{0.04f}; // gain applied to integral of gyro correction for complementary filter (1/sec)
const float _weight_min{0.0f}; // minimum value of an individual model weighting
// Declarations used by the bank of N_MODELS_EKFGSF AHRS complementary filters
Vector3f _delta_ang{}; // IMU delta angle (rad)
Vector3f _delta_vel{}; // IMU delta velocity (m/s)
float _delta_ang_dt{}; // _delta_ang integration time interval (sec)
float _delta_vel_dt{}; // _delta_vel integration time interval (sec)
float _true_airspeed{}; // true airspeed used for centripetal accel compensation (m/s)
struct _ahrs_ekf_gsf_struct{
Dcmf R; // matrix that rotates a vector from body to earth frame
Vector3f gyro_bias; // gyro bias learned and used by the quaternion calculation
bool aligned; // true when AHRS has been aligned
float vel_NE[2]; // NE velocity vector from last GPS measurement (m/s)
bool fuse_gps; // true when GPS should be fused on that frame
float accel_dt; // time step used when generating _simple_accel_FR data (sec)
} _ahrs_ekf_gsf[N_MODELS_EKFGSF]{};
bool _ahrs_ekf_gsf_tilt_aligned{}; // true the initial tilt alignment has been calculated
float _ahrs_accel_fusion_gain{}; // gain from accel vector tilt error to rate gyro correction used by AHRS calculation
Vector3f _ahrs_accel{}; // low pass filtered body frame specific force vector used by AHRS calculation (m/s/s)
float _ahrs_accel_norm{}; // length of _ahrs_accel specific force vector used by AHRS calculation (m/s/s)
// calculate the gain from gravity vector misalingment to tilt correction to be used by all AHRS filters
float ahrsCalcAccelGain() const;
// update specified AHRS rotation matrix using IMU and optionally true airspeed data
void ahrsPredict(const uint8_t model_index);
// align all AHRS roll and pitch orientations using IMU delta velocity vector
void ahrsAlignTilt();
// align all AHRS yaw orientations to initial values
void ahrsAlignYaw();
// Efficient propagation of a delta angle in body frame applied to the body to earth frame rotation matrix
Matrix3f ahrsPredictRotMat(const Matrix3f &R, const Vector3f &g);
// Declarations used by a bank of N_MODELS_EKFGSF EKFs
struct _ekf_gsf_struct{
matrix::Vector3f X; // Vel North (m/s), Vel East (m/s), yaw (rad)s
matrix::SquareMatrix<float, 3> P; // covariance matrix
matrix::SquareMatrix<float, 2> S_inverse; // inverse of the innovation covariance matrix
float S_det_inverse; // inverse of the innovation covariance matrix determinant
matrix::Vector2f innov; // Velocity N,E innovation (m/s)
} _ekf_gsf[N_MODELS_EKFGSF]{};
bool _vel_data_updated{}; // true when velocity data has been updated
bool _run_ekf_gsf{}; // true when operating condition is suitable for to run the GSF and EKF models and fuse velocity data
Vector2f _vel_NE{}; // NE velocity observations (m/s)
float _vel_accuracy{}; // 1-sigma accuracy of velocity observations (m/s)
bool _ekf_gsf_vel_fuse_started{}; // true when the EKF's have started fusing velocity data and the prediction and update processing is active
// initialise states and covariance data for the GSF and EKF filters
void initialiseEKFGSF();
// predict state and covariance for the specified EKF using inertial data
void predictEKF(const uint8_t model_index);
// update state and covariance for the specified EKF using a NE velocity measurement
// return false if update failed
bool updateEKF(const uint8_t model_index);
inline float sq(float x) const { return x * x; };
// Declarations used by the Gaussian Sum Filter (GSF) that combines the individual EKF yaw estimates
matrix::Vector<float, N_MODELS_EKFGSF> _model_weights{};
float _gsf_yaw{}; // yaw estimate (rad)
float _gsf_yaw_variance{}; // variance of yaw estimate (rad^2)
// return the probability of the state estimate for the specified EKF assuming a gaussian error distribution
float gaussianDensity(const uint8_t model_index) const;
};