You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
538 lines
20 KiB
538 lines
20 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.cpp |
|
* Core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
*/ |
|
|
|
#include "ekf.h" |
|
|
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
|
|
bool Ekf::init(uint64_t timestamp) |
|
{ |
|
bool ret = initialise_interface(timestamp); |
|
reset(); |
|
_accel_lpf.setAlpha(.1f); |
|
_gyro_lpf.setAlpha(.1f); |
|
_mag_lpf.setAlpha(.1f); |
|
return ret; |
|
} |
|
|
|
void Ekf::reset() |
|
{ |
|
_state.vel.setZero(); |
|
_state.pos.setZero(); |
|
_state.delta_ang_bias.setZero(); |
|
_state.delta_vel_bias.setZero(); |
|
_state.mag_I.setZero(); |
|
_state.mag_B.setZero(); |
|
_state.wind_vel.setZero(); |
|
_state.quat_nominal.setIdentity(); |
|
|
|
// TODO: who resets the output buffer content? |
|
_output_new.vel.setZero(); |
|
_output_new.pos.setZero(); |
|
_output_new.quat_nominal.setIdentity(); |
|
|
|
_delta_angle_corr.setZero(); |
|
|
|
_imu_updated = false; |
|
_NED_origin_initialised = false; |
|
_gps_speed_valid = false; |
|
|
|
_filter_initialised = false; |
|
_terrain_initialised = false; |
|
_range_sensor.setPitchOffset(_params.rng_sens_pitch); |
|
_range_sensor.setCosMaxTilt(_params.range_cos_max_tilt); |
|
_range_sensor.setQualityHysteresis(_params.range_valid_quality_s); |
|
|
|
_control_status.value = 0; |
|
_control_status_prev.value = 0; |
|
|
|
_dt_ekf_avg = FILTER_UPDATE_PERIOD_S; |
|
|
|
_ang_rate_delayed_raw.zero(); |
|
|
|
_fault_status.value = 0; |
|
_innov_check_fail_status.value = 0; |
|
|
|
_accel_magnitude_filt = 0.0f; |
|
_ang_rate_magnitude_filt = 0.0f; |
|
_prev_dvel_bias_var.zero(); |
|
|
|
_gps_alt_ref = 0.0f; |
|
|
|
resetGpsDriftCheckFilters(); |
|
} |
|
|
|
bool Ekf::update() |
|
{ |
|
bool updated = false; |
|
|
|
if (!_filter_initialised) { |
|
_filter_initialised = initialiseFilter(); |
|
|
|
if (!_filter_initialised) { |
|
return false; |
|
} |
|
} |
|
|
|
// Only run the filter if IMU data in the buffer has been updated |
|
if (_imu_updated) { |
|
// perform state and covariance prediction for the main filter |
|
predictState(); |
|
predictCovariance(); |
|
|
|
// control fusion of observation data |
|
controlFusionModes(); |
|
|
|
// run a separate filter for terrain estimation |
|
runTerrainEstimator(); |
|
|
|
updated = true; |
|
|
|
// run EKF-GSF yaw estimator |
|
runYawEKFGSF(); |
|
} |
|
|
|
// the output observer always runs |
|
// Use full rate IMU data at the current time horizon |
|
calculateOutputStates(_newest_high_rate_imu_sample); |
|
|
|
return updated; |
|
} |
|
|
|
bool Ekf::initialiseFilter() |
|
{ |
|
// Filter accel for tilt initialization |
|
const imuSample &imu_init = _imu_buffer.get_newest(); |
|
|
|
// protect against zero data |
|
if (imu_init.delta_vel_dt < 1e-4f || imu_init.delta_ang_dt < 1e-4f) { |
|
return false; |
|
} |
|
|
|
if (_is_first_imu_sample) { |
|
_accel_lpf.reset(imu_init.delta_vel / imu_init.delta_vel_dt); |
|
_gyro_lpf.reset(imu_init.delta_ang / imu_init.delta_ang_dt); |
|
_is_first_imu_sample = false; |
|
|
|
} else { |
|
_accel_lpf.update(imu_init.delta_vel / imu_init.delta_vel_dt); |
|
_gyro_lpf.update(imu_init.delta_ang / imu_init.delta_ang_dt); |
|
} |
|
|
|
// Sum the magnetometer measurements |
|
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) { |
|
if (_mag_sample_delayed.time_us != 0) { |
|
_mag_counter ++; |
|
|
|
// wait for all bad initial data to be flushed |
|
if (_mag_counter <= uint8_t(_obs_buffer_length + 1)) { |
|
_mag_lpf.reset(_mag_sample_delayed.mag); |
|
|
|
} else { |
|
_mag_lpf.update(_mag_sample_delayed.mag); |
|
} |
|
} |
|
} |
|
|
|
// accumulate enough height measurements to be confident in the quality of the data |
|
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) { |
|
if (_baro_sample_delayed.time_us != 0) { |
|
_baro_counter ++; |
|
|
|
// wait for all bad initial data to be flushed |
|
if (_baro_counter <= uint8_t(_obs_buffer_length + 1)) { |
|
_baro_hgt_offset = _baro_sample_delayed.hgt; |
|
|
|
} else if (_baro_counter > (uint8_t)(_obs_buffer_length + 1)) { |
|
_baro_hgt_offset = 0.9f * _baro_hgt_offset + 0.1f * _baro_sample_delayed.hgt; |
|
} |
|
} |
|
} |
|
|
|
const bool not_enough_baro_samples_accumulated = _baro_counter <= 2u * _obs_buffer_length; |
|
const bool not_enough_mag_samples_accumulated = _mag_counter <= 2u * _obs_buffer_length; |
|
|
|
if (not_enough_baro_samples_accumulated || not_enough_mag_samples_accumulated) { |
|
return false; |
|
} |
|
|
|
// we use baro height initially and switch to GPS/range/EV finder later when it passes checks. |
|
setControlBaroHeight(); |
|
|
|
if (!initialiseTilt()) { |
|
return false; |
|
} |
|
|
|
// calculate the initial magnetic field and yaw alignment |
|
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState(), false, false); |
|
|
|
// initialise the state covariance matrix now we have starting values for all the states |
|
initialiseCovariance(); |
|
|
|
// update the yaw angle variance using the variance of the measurement |
|
if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) { |
|
// using magnetic heading tuning parameter |
|
increaseQuatYawErrVariance(sq(fmaxf(_params.mag_heading_noise, 1.0e-2f))); |
|
} |
|
|
|
// try to initialise the terrain estimator |
|
_terrain_initialised = initHagl(); |
|
|
|
// reset the essential fusion timeout counters |
|
_time_last_hgt_fuse = _time_last_imu; |
|
_time_last_hor_pos_fuse = _time_last_imu; |
|
_time_last_delpos_fuse = _time_last_imu; |
|
_time_last_hor_vel_fuse = _time_last_imu; |
|
_time_last_hagl_fuse = _time_last_imu; |
|
_time_last_of_fuse = _time_last_imu; |
|
|
|
// reset the output predictor state history to match the EKF initial values |
|
alignOutputFilter(); |
|
|
|
return true; |
|
} |
|
|
|
bool Ekf::initialiseTilt() |
|
{ |
|
const float accel_norm = _accel_lpf.getState().norm(); |
|
const float gyro_norm = _gyro_lpf.getState().norm(); |
|
|
|
if (accel_norm < 0.9f * CONSTANTS_ONE_G || |
|
accel_norm > 1.1f * CONSTANTS_ONE_G || |
|
gyro_norm > math::radians(15.0f)) { |
|
return false; |
|
} |
|
|
|
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static |
|
const Vector3f gravity_in_body = _accel_lpf.getState().normalized(); |
|
const float pitch = asinf(gravity_in_body(0)); |
|
const float roll = atan2f(-gravity_in_body(1), -gravity_in_body(2)); |
|
|
|
const Eulerf euler_init(roll, pitch, 0.0f); |
|
_state.quat_nominal = Quatf(euler_init); |
|
_R_to_earth = Dcmf(_state.quat_nominal); |
|
|
|
return true; |
|
} |
|
|
|
void Ekf::predictState() |
|
{ |
|
// apply imu bias corrections |
|
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _state.delta_ang_bias; |
|
|
|
// subtract component of angular rate due to earth rotation |
|
corrected_delta_ang -= _R_to_earth.transpose() * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt; |
|
|
|
const Quatf dq(AxisAnglef{corrected_delta_ang}); |
|
|
|
// rotate the previous quaternion by the delta quaternion using a quaternion multiplication |
|
_state.quat_nominal = (_state.quat_nominal * dq).normalized(); |
|
|
|
_R_to_earth = Dcmf(_state.quat_nominal); |
|
|
|
// Calculate an earth frame delta velocity |
|
const Vector3f corrected_delta_vel = _imu_sample_delayed.delta_vel - _state.delta_vel_bias; |
|
const Vector3f corrected_delta_vel_ef = _R_to_earth * corrected_delta_vel; |
|
|
|
// calculate a filtered horizontal acceleration with a 1 sec time constant |
|
// this are used for manoeuvre detection elsewhere |
|
const float alpha = 1.0f - _imu_sample_delayed.delta_vel_dt; |
|
_accel_lpf_NE = _accel_lpf_NE * alpha + corrected_delta_vel_ef.xy(); |
|
|
|
// save the previous value of velocity so we can use trapzoidal integration |
|
const Vector3f vel_last = _state.vel; |
|
|
|
// calculate the increment in velocity using the current orientation |
|
_state.vel += corrected_delta_vel_ef; |
|
|
|
// compensate for acceleration due to gravity |
|
_state.vel(2) += CONSTANTS_ONE_G * _imu_sample_delayed.delta_vel_dt; |
|
|
|
// predict position states via trapezoidal integration of velocity |
|
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f; |
|
|
|
constrainStates(); |
|
|
|
// calculate an average filter update time |
|
float input = 0.5f * (_imu_sample_delayed.delta_vel_dt + _imu_sample_delayed.delta_ang_dt); |
|
|
|
// filter and limit input between -50% and +100% of nominal value |
|
input = math::constrain(input, 0.5f * FILTER_UPDATE_PERIOD_S, 2.0f * FILTER_UPDATE_PERIOD_S); |
|
_dt_ekf_avg = 0.99f * _dt_ekf_avg + 0.01f * input; |
|
|
|
// some calculations elsewhere in code require a raw angular rate vector so calculate here to avoid duplication |
|
// protect angainst possible small timesteps resulting from timing slip on previous frame that can drive spikes into the rate |
|
// due to insufficient averaging |
|
if (_imu_sample_delayed.delta_ang_dt > 0.25f * FILTER_UPDATE_PERIOD_S) { |
|
_ang_rate_delayed_raw = _imu_sample_delayed.delta_ang / _imu_sample_delayed.delta_ang_dt; |
|
} |
|
|
|
} |
|
|
|
/* |
|
* Implement a strapdown INS algorithm using the latest IMU data at the current time horizon. |
|
* Buffer the INS states and calculate the difference with the EKF states at the delayed fusion time horizon. |
|
* Calculate delta angle, delta velocity and velocity corrections from the differences and apply them at the |
|
* current time horizon so that the INS states track the EKF states at the delayed fusion time horizon. |
|
* The inspiration for using a complementary filter to correct for time delays in the EKF |
|
* is based on the work by A Khosravian: |
|
* “Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements” |
|
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University |
|
*/ |
|
void Ekf::calculateOutputStates(const imuSample &imu) |
|
{ |
|
// Use full rate IMU data at the current time horizon |
|
|
|
// correct delta angles for bias offsets |
|
const float dt_scale_correction = _dt_imu_avg / _dt_ekf_avg; |
|
|
|
// Apply corrections to the delta angle required to track the quaternion states at the EKF fusion time horizon |
|
const Vector3f delta_angle(imu.delta_ang - _state.delta_ang_bias * dt_scale_correction + _delta_angle_corr); |
|
|
|
// calculate a yaw change about the earth frame vertical |
|
const float spin_del_ang_D = delta_angle.dot(Vector3f(_R_to_earth_now.row(2))); |
|
_yaw_delta_ef += spin_del_ang_D; |
|
|
|
// Calculate filtered yaw rate to be used by the magnetometer fusion type selection logic |
|
// Note fixed coefficients are used to save operations. The exact time constant is not important. |
|
_yaw_rate_lpf_ef = 0.95f * _yaw_rate_lpf_ef + 0.05f * spin_del_ang_D / imu.delta_ang_dt; |
|
|
|
const Quatf dq(AxisAnglef{delta_angle}); |
|
|
|
// rotate the previous INS quaternion by the delta quaternions |
|
_output_new.time_us = imu.time_us; |
|
_output_new.quat_nominal = _output_new.quat_nominal * dq; |
|
|
|
// the quaternions must always be normalised after modification |
|
_output_new.quat_nominal.normalize(); |
|
|
|
// calculate the rotation matrix from body to earth frame |
|
_R_to_earth_now = Dcmf(_output_new.quat_nominal); |
|
|
|
// correct delta velocity for bias offsets |
|
const Vector3f delta_vel_body{imu.delta_vel - _state.delta_vel_bias * dt_scale_correction}; |
|
|
|
// rotate the delta velocity to earth frame |
|
Vector3f delta_vel_earth{_R_to_earth_now * delta_vel_body}; |
|
|
|
// correct for measured acceleration due to gravity |
|
delta_vel_earth(2) += CONSTANTS_ONE_G * imu.delta_vel_dt; |
|
|
|
// calculate the earth frame velocity derivatives |
|
if (imu.delta_vel_dt > 1e-4f) { |
|
_vel_deriv = delta_vel_earth * (1.0f / imu.delta_vel_dt); |
|
} |
|
|
|
// save the previous velocity so we can use trapezoidal integration |
|
const Vector3f vel_last(_output_new.vel); |
|
|
|
// increment the INS velocity states by the measurement plus corrections |
|
// do the same for vertical state used by alternative correction algorithm |
|
_output_new.vel += delta_vel_earth; |
|
_output_vert_new.vert_vel += delta_vel_earth(2); |
|
|
|
// use trapezoidal integration to calculate the INS position states |
|
// do the same for vertical state used by alternative correction algorithm |
|
const Vector3f delta_pos_NED = (_output_new.vel + vel_last) * (imu.delta_vel_dt * 0.5f); |
|
_output_new.pos += delta_pos_NED; |
|
_output_vert_new.vert_vel_integ += delta_pos_NED(2); |
|
|
|
// accumulate the time for each update |
|
_output_vert_new.dt += imu.delta_vel_dt; |
|
|
|
// correct velocity for IMU offset |
|
if (imu.delta_ang_dt > 1e-4f) { |
|
// calculate the average angular rate across the last IMU update |
|
const Vector3f ang_rate = imu.delta_ang * (1.0f / imu.delta_ang_dt); |
|
|
|
// calculate the velocity of the IMU relative to the body origin |
|
const Vector3f vel_imu_rel_body = ang_rate % _params.imu_pos_body; |
|
|
|
// rotate the relative velocity into earth frame |
|
_vel_imu_rel_body_ned = _R_to_earth_now * vel_imu_rel_body; |
|
} |
|
|
|
// store the INS states in a ring buffer with the same length and time coordinates as the IMU data buffer |
|
if (_imu_updated) { |
|
_output_buffer.push(_output_new); |
|
_output_vert_buffer.push(_output_vert_new); |
|
|
|
// get the oldest INS state data from the ring buffer |
|
// this data will be at the EKF fusion time horizon |
|
// TODO: there is no guarantee that data is at delayed fusion horizon |
|
// Shouldnt we use pop_first_older_than? |
|
const outputSample &output_delayed = _output_buffer.get_oldest(); |
|
const outputVert &output_vert_delayed = _output_vert_buffer.get_oldest(); |
|
|
|
// calculate the quaternion delta between the INS and EKF quaternions at the EKF fusion time horizon |
|
const Quatf q_error((_state.quat_nominal.inversed() * output_delayed.quat_nominal).normalized()); |
|
|
|
// convert the quaternion delta to a delta angle |
|
const float scalar = (q_error(0) >= 0.0f) ? -2.f : 2.f; |
|
|
|
const Vector3f delta_ang_error{scalar * q_error(1), scalar * q_error(2), scalar * q_error(3)}; |
|
|
|
// calculate a gain that provides tight tracking of the estimator attitude states and |
|
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7 |
|
const float time_delay = fmaxf((imu.time_us - _imu_sample_delayed.time_us) * 1e-6f, _dt_imu_avg); |
|
const float att_gain = 0.5f * _dt_imu_avg / time_delay; |
|
|
|
// calculate a corrrection to the delta angle |
|
// that will cause the INS to track the EKF quaternions |
|
_delta_angle_corr = delta_ang_error * att_gain; |
|
_output_tracking_error(0) = delta_ang_error.norm(); |
|
|
|
/* |
|
* Loop through the output filter state history and apply the corrections to the velocity and position states. |
|
* This method is too expensive to use for the attitude states due to the quaternion operations required |
|
* but because it eliminates the time delay in the 'correction loop' it allows higher tracking gains |
|
* to be used and reduces tracking error relative to EKF states. |
|
*/ |
|
|
|
// Complementary filter gains |
|
const float vel_gain = _dt_ekf_avg / math::constrain(_params.vel_Tau, _dt_ekf_avg, 10.0f); |
|
const float pos_gain = _dt_ekf_avg / math::constrain(_params.pos_Tau, _dt_ekf_avg, 10.0f); |
|
|
|
// calculate down velocity and position tracking errors |
|
const float vert_vel_err = (_state.vel(2) - output_vert_delayed.vert_vel); |
|
const float vert_vel_integ_err = (_state.pos(2) - output_vert_delayed.vert_vel_integ); |
|
|
|
// calculate a velocity correction that will be applied to the output state history |
|
// using a PD feedback tuned to a 5% overshoot |
|
const float vert_vel_correction = vert_vel_integ_err * pos_gain + vert_vel_err * vel_gain * 1.1f; |
|
|
|
applyCorrectionToVerticalOutputBuffer(vert_vel_correction); |
|
|
|
// calculate velocity and position tracking errors |
|
const Vector3f vel_err(_state.vel - output_delayed.vel); |
|
const Vector3f pos_err(_state.pos - output_delayed.pos); |
|
|
|
_output_tracking_error(1) = vel_err.norm(); |
|
_output_tracking_error(2) = pos_err.norm(); |
|
|
|
// calculate a velocity correction that will be applied to the output state history |
|
_vel_err_integ += vel_err; |
|
const Vector3f vel_correction = vel_err * vel_gain + _vel_err_integ * sq(vel_gain) * 0.1f; |
|
|
|
// calculate a position correction that will be applied to the output state history |
|
_pos_err_integ += pos_err; |
|
const Vector3f pos_correction = pos_err * pos_gain + _pos_err_integ * sq(pos_gain) * 0.1f; |
|
|
|
applyCorrectionToOutputBuffer(vel_correction, pos_correction); |
|
} |
|
} |
|
|
|
/* |
|
* Calculate a correction to be applied to vert_vel that casues vert_vel_integ to track the EKF |
|
* down position state at the fusion time horizon using an alternative algorithm to what |
|
* is used for the vel and pos state tracking. The algorithm applies a correction to the vert_vel |
|
* state history and propagates vert_vel_integ forward in time using the corrected vert_vel history. |
|
* This provides an alternative vertical velocity output that is closer to the first derivative |
|
* of the position but does degrade tracking relative to the EKF state. |
|
*/ |
|
void Ekf::applyCorrectionToVerticalOutputBuffer(float vert_vel_correction) |
|
{ |
|
// loop through the vertical output filter state history starting at the oldest and apply the corrections to the |
|
// vert_vel states and propagate vert_vel_integ forward using the corrected vert_vel |
|
uint8_t index = _output_vert_buffer.get_oldest_index(); |
|
|
|
const uint8_t size = _output_vert_buffer.get_length(); |
|
|
|
for (uint8_t counter = 0; counter < (size - 1); counter++) { |
|
const uint8_t index_next = (index + 1) % size; |
|
outputVert ¤t_state = _output_vert_buffer[index]; |
|
outputVert &next_state = _output_vert_buffer[index_next]; |
|
|
|
// correct the velocity |
|
if (counter == 0) { |
|
current_state.vert_vel += vert_vel_correction; |
|
} |
|
|
|
next_state.vert_vel += vert_vel_correction; |
|
|
|
// position is propagated forward using the corrected velocity and a trapezoidal integrator |
|
next_state.vert_vel_integ = current_state.vert_vel_integ + (current_state.vert_vel + next_state.vert_vel) * 0.5f * next_state.dt; |
|
|
|
// advance the index |
|
index = (index + 1) % size; |
|
} |
|
|
|
// update output state to corrected values |
|
_output_vert_new = _output_vert_buffer.get_newest(); |
|
|
|
// reset time delta to zero for the next accumulation of full rate IMU data |
|
_output_vert_new.dt = 0.0f; |
|
} |
|
|
|
/* |
|
* Calculate corrections to be applied to vel and pos output state history. |
|
* The vel and pos state history are corrected individually so they track the EKF states at |
|
* the fusion time horizon. This option provides the most accurate tracking of EKF states. |
|
*/ |
|
void Ekf::applyCorrectionToOutputBuffer(const Vector3f& vel_correction, const Vector3f& pos_correction) |
|
{ |
|
// loop through the output filter state history and apply the corrections to the velocity and position states |
|
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) { |
|
// a constant velocity correction is applied |
|
_output_buffer[index].vel += vel_correction; |
|
|
|
// a constant position correction is applied |
|
_output_buffer[index].pos += pos_correction; |
|
} |
|
|
|
// update output state to corrected values |
|
_output_new = _output_buffer.get_newest(); |
|
} |
|
|
|
/* |
|
* Predict the previous quaternion output state forward using the latest IMU delta angle data. |
|
*/ |
|
Quatf Ekf::calculate_quaternion() const |
|
{ |
|
// Correct delta angle data for bias errors using bias state estimates from the EKF and also apply |
|
// corrections required to track the EKF quaternion states |
|
const Vector3f delta_angle{_newest_high_rate_imu_sample.delta_ang - _state.delta_ang_bias * (_dt_imu_avg / _dt_ekf_avg) + _delta_angle_corr}; |
|
|
|
// increment the quaternions using the corrected delta angle vector |
|
// the quaternions must always be normalised after modification |
|
return Quatf{_output_new.quat_nominal * AxisAnglef{delta_angle}}.unit(); |
|
}
|
|
|