You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
324 lines
13 KiB
324 lines
13 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.h |
|
* Class for core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "estimator_interface.h" |
|
#include "geo.h" |
|
|
|
class Ekf : public EstimatorInterface |
|
{ |
|
public: |
|
|
|
Ekf(); |
|
~Ekf(); |
|
|
|
// initialise variables to sane values (also interface class) |
|
bool init(uint64_t timestamp); |
|
|
|
// should be called every time new data is pushed into the filter |
|
bool update(); |
|
|
|
// gets the innovations of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void get_vel_pos_innov(float vel_pos_innov[6]); |
|
|
|
// gets the innovations of the earth magnetic field measurements |
|
void get_mag_innov(float mag_innov[3]); |
|
|
|
// gets the innovations of the heading measurement |
|
void get_heading_innov(float *heading_innov); |
|
|
|
// gets the innovation variances of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void get_vel_pos_innov_var(float vel_pos_innov_var[6]); |
|
|
|
// gets the innovation variances of the earth magnetic field measurements |
|
void get_mag_innov_var(float mag_innov_var[3]); |
|
|
|
// gets the innovation variance of the heading measurement |
|
void get_heading_innov_var(float *heading_innov_var); |
|
|
|
// gets the innovation variance of the flow measurement |
|
void get_flow_innov_var(float flow_innov_var[2]); |
|
|
|
// gets the innovation of the flow measurement |
|
void get_flow_innov(float flow_innov[2]); |
|
|
|
// gets the innovation variance of the HAGL measurement |
|
void get_hagl_innov_var(float *hagl_innov_var); |
|
|
|
// gets the innovation of the HAGL measurement |
|
void get_hagl_innov(float *hagl_innov); |
|
|
|
// get the state vector at the delayed time horizon |
|
void get_state_delayed(float *state); |
|
|
|
// get the diagonal elements of the covariance matrix |
|
void get_covariances(float *covariances); |
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined |
|
bool collect_gps(uint64_t time_usec, struct gps_message *gps); |
|
bool collect_imu(imuSample &imu); |
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set |
|
void get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt); |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
void get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning); |
|
|
|
void get_vel_var(Vector3f &vel_var); |
|
|
|
void get_pos_var(Vector3f &pos_var); |
|
|
|
// return true if the global position estimate is valid |
|
bool global_position_is_valid(); |
|
|
|
// return true if the etimate is valid |
|
// return the estimated terrain vertical position relative to the NED origin |
|
bool get_terrain_vert_pos(float *ret); |
|
|
|
private: |
|
|
|
static const uint8_t _k_num_states = 24; |
|
static constexpr float _k_earth_rate = 0.000072921f; |
|
|
|
stateSample _state; // state struct of the ekf running at the delayed time horizon |
|
|
|
bool _filter_initialised; // true when the EKF sttes and covariances been initialised |
|
bool _earth_rate_initialised; // true when we know the earth rotatin rate (requires GPS) |
|
|
|
bool _fuse_height; // baro height data should be fused |
|
bool _fuse_pos; // gps position data should be fused |
|
bool _fuse_hor_vel; // gps horizontal velocity measurement should be fused |
|
bool _fuse_vert_vel; // gps vertical velocity measurement should be fused |
|
bool _fuse_flow; // flow measurement should be fused |
|
bool _fuse_hagl_data; // if true then range data will be fused to estimate terrain height |
|
|
|
uint64_t _time_last_fake_gps; // last time in us at which we have faked gps measurement for static mode |
|
|
|
uint64_t _time_last_pos_fuse; // time the last fusion of horizontal position measurements was performed (usec) |
|
uint64_t _time_last_vel_fuse; // time the last fusion of velocity measurements was performed (usec) |
|
uint64_t _time_last_hgt_fuse; // time the last fusion of height measurements was performed (usec) |
|
uint64_t _time_last_of_fuse; // time the last fusion of optical flow measurements were performed (usec) |
|
Vector2f _last_known_posNE; // last known local NE position vector (m) |
|
float _last_disarmed_posD; // vertical position recorded at arming (m) |
|
|
|
Vector3f _earth_rate_NED; // earth rotation vector (NED) in rad/s |
|
|
|
matrix::Dcm<float> _R_prev; // transformation matrix from earth frame to body frame of previous ekf step |
|
|
|
float P[_k_num_states][_k_num_states]; // state covariance matrix |
|
float KH[_k_num_states][_k_num_states]; // intermediate variable for the covariance update |
|
float KHP[_k_num_states][_k_num_states]; // intermediate variable for the covariance update |
|
|
|
float _vel_pos_innov[6]; // innovations: 0-2 vel, 3-5 pos |
|
float _vel_pos_innov_var[6]; // innovation variances: 0-2 vel, 3-5 pos |
|
|
|
float _mag_innov[3]; // earth magnetic field innovations |
|
float _mag_innov_var[3]; // earth magnetic field innovation variance |
|
|
|
float _heading_innov; // heading measurement innovation |
|
float _heading_innov_var; // heading measurement innovation variance |
|
|
|
Vector3f _tilt_err_vec; // Vector of the most recent attitude error correction from velocity and position fusion |
|
float _tilt_err_length_filt; // filtered length of _tilt_err_vec |
|
|
|
// optical flow processing |
|
float _flow_innov[2]; // flow measurement innovation |
|
float _flow_innov_var[2]; // flow innovation variance |
|
Vector2f _flow_gyro_bias; // bias errors in optical flow sensor rate gyro outputs |
|
Vector2f _imu_del_ang_of; // bias corrected XY delta angle measurements accumulated across the same time frame as the optical flow rates |
|
float _delta_time_of; // time in sec that _imu_del_ang_of was accumulated over |
|
|
|
float _mag_declination; // magnetic declination used by reset and fusion functions (rad) |
|
|
|
// complementary filter states |
|
Vector3f _delta_angle_corr; // delta angle correction vector |
|
Vector3f _delta_vel_corr; // delta velocity correction vector |
|
Vector3f _vel_corr; // velocity correction vector |
|
imuSample _imu_down_sampled; // down sampled imu data (sensor rate -> filter update rate) |
|
Quaternion _q_down_sampled; // down sampled quaternion (tracking delta angles between ekf update steps) |
|
|
|
// variables used for the GPS quality checks |
|
float _gpsDriftVelN; // GPS north position derivative (m/s) |
|
float _gpsDriftVelE; // GPS east position derivative (m/s) |
|
float _gps_drift_velD; // GPS down position derivative (m/s) |
|
float _gps_velD_diff_filt; // GPS filtered Down velocity (m/s) |
|
float _gps_velN_filt; // GPS filtered North velocity (m/s) |
|
float _gps_velE_filt; // GPS filtered East velocity (m/s) |
|
uint64_t _last_gps_fail_us; // last system time in usec that the GPS failed it's checks |
|
|
|
// Variables used to publish the WGS-84 location of the EKF local NED origin |
|
uint64_t _last_gps_origin_time_us; // time the origin was last set (uSec) |
|
float _gps_alt_ref; // WGS-84 height (m) |
|
|
|
// Variables used to initialise the filter states |
|
uint32_t _hgt_counter; // number of height samples taken |
|
float _hgt_filt_state; // filtered height measurement |
|
uint32_t _mag_counter; // number of magnetometer samples taken |
|
uint64_t _time_last_mag; // measurement time of last magnetomter sample |
|
Vector3f _mag_filt_state; // filtered magnetometer measurement |
|
Vector3f _delVel_sum; // summed delta velocity |
|
float _hgt_sensor_offset; // height that needs to be subtracted from the primary height sensor so that it reads zero height at the origin (m) |
|
|
|
gps_check_fail_status_u _gps_check_fail_status; |
|
|
|
// Terrain height state estimation |
|
float _terrain_vpos; // estimated vertical position of the terrain underneath the vehicle in local NED frame (m) |
|
float _terrain_var; // variance of terrain position estimate (m^2) |
|
float _hagl_innov; // innovation of the last height above terrain measurement (m) |
|
float _hagl_innov_var; // innovation variance for the last height above terrain measurement (m^2) |
|
uint64_t _time_last_hagl_fuse; // last system time in usec that the hagl measurement failed it's checks |
|
bool _terrain_initialised; // true when the terrain estimator has been intialised |
|
|
|
// height sensor fault status |
|
bool _baro_hgt_faulty; // true if valid baro data is unavailable for use |
|
bool _gps_hgt_faulty; // true if valid gps height data is unavailable for use |
|
bool _rng_hgt_faulty; // true if valid rnage finder height data is unavailable for use |
|
int _primary_hgt_source; // priary source of height data set at initialisation |
|
|
|
float _baro_hgt_offset; // number of metres the baro height origin is above the local NED origin (m) |
|
|
|
// update the real time complementary filter states. This includes the prediction |
|
// and the correction step |
|
void calculateOutputStates(); |
|
|
|
// initialise filter states of both the delayed ekf and the real time complementary filter |
|
bool initialiseFilter(void); |
|
|
|
// initialise ekf covariance matrix |
|
void initialiseCovariance(); |
|
|
|
// predict ekf state |
|
void predictState(); |
|
|
|
// predict ekf covariance |
|
void predictCovariance(); |
|
|
|
// ekf sequential fusion of magnetometer measurements |
|
void fuseMag(); |
|
|
|
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer) |
|
void fuseHeading(); |
|
|
|
// fuse projecton of magnetometer onto horizontal plane |
|
void fuseMag2D(); |
|
|
|
// fuse magnetometer declination measurement |
|
void fuseDeclination(); |
|
|
|
// fuse airspeed measurement |
|
void fuseAirspeed(); |
|
|
|
// fuse velocity and position measurements (also barometer height) |
|
void fuseVelPosHeight(); |
|
|
|
// reset velocity states of the ekf |
|
bool resetVelocity(); |
|
|
|
// fuse optical flow line of sight rate measurements |
|
void fuseOptFlow(); |
|
|
|
// calculate optical flow bias errors |
|
void calcOptFlowBias(); |
|
|
|
// initialise the terrain vertical position estimator |
|
// return true if the initialisation is successful |
|
bool initHagl(); |
|
|
|
// predict the terrain vertical position state and variance |
|
void predictHagl(); |
|
|
|
// update the terrain vertical position estimate using a height above ground measurement from the range finder |
|
void fuseHagl(); |
|
|
|
// reset the heading and magnetic field states using the declination and magnetometer measurements |
|
// return true if successful |
|
bool resetMagHeading(Vector3f &mag_init); |
|
|
|
// calculate the magnetic declination to be used by the alignment and fusion processing |
|
void calcMagDeclination(); |
|
|
|
// reset position states of the ekf (only vertical position) |
|
bool resetPosition(); |
|
|
|
// reset height state of the ekf |
|
void resetHeight(); |
|
|
|
void makeCovSymetrical(); |
|
|
|
// limit the diagonal of the covariance matrix |
|
void limitCov(); |
|
|
|
// make ekf covariance matrix symmetric |
|
void makeSymmetrical(); |
|
|
|
// constrain the ekf states |
|
void constrainStates(); |
|
|
|
// generic function which will perform a fusion step given a kalman gain K |
|
// and a scalar innovation value |
|
void fuse(float *K, float innovation); |
|
|
|
// calculate the earth rotation vector from a given latitude |
|
void calcEarthRateNED(Vector3f &omega, double lat_rad) const; |
|
|
|
// return true id the GPS quality is good enough to set an origin and start aiding |
|
bool gps_is_good(struct gps_message *gps); |
|
|
|
// Control the filter fusion modes |
|
void controlFusionModes(); |
|
|
|
// Determine if we are airborne or motors are armed |
|
void calculateVehicleStatus(); |
|
|
|
// return the square of two floating point numbers - used in auto coded sections |
|
inline float sq(float var) |
|
{ |
|
return var * var; |
|
} |
|
|
|
// zero the specified range of rows in the state covariance matrix |
|
void zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); |
|
|
|
// zero the specified range of columns in the state covariance matrix |
|
void zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); |
|
};
|
|
|