You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
537 lines
24 KiB
537 lines
24 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf.h |
|
* Class for core functions for ekf attitude and position estimator. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "estimator_interface.h" |
|
#include "geo.h" |
|
|
|
class Ekf : public EstimatorInterface |
|
{ |
|
public: |
|
|
|
Ekf() = default; |
|
~Ekf() = default; |
|
|
|
// initialise variables to sane values (also interface class) |
|
bool init(uint64_t timestamp); |
|
|
|
// should be called every time new data is pushed into the filter |
|
bool update(); |
|
|
|
// gets the innovations of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void get_vel_pos_innov(float vel_pos_innov[6]); |
|
|
|
// gets the innovations of the earth magnetic field measurements |
|
void get_mag_innov(float mag_innov[3]); |
|
|
|
// gets the innovations of the heading measurement |
|
void get_heading_innov(float *heading_innov); |
|
|
|
// gets the innovation variances of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void get_vel_pos_innov_var(float vel_pos_innov_var[6]); |
|
|
|
// gets the innovation variances of the earth magnetic field measurements |
|
void get_mag_innov_var(float mag_innov_var[3]); |
|
|
|
// gets the innovations of airspeed measurement |
|
void get_airspeed_innov(float *airspeed_innov); |
|
|
|
// gets the innovation variance of the airspeed measurement |
|
void get_airspeed_innov_var(float *airspeed_innov_var); |
|
|
|
// gets the innovations of synthetic sideslip measurement |
|
void get_beta_innov(float *beta_innov); |
|
|
|
// gets the innovation variance of the synthetic sideslip measurement |
|
void get_beta_innov_var(float *beta_innov_var); |
|
|
|
// gets the innovation variance of the heading measurement |
|
void get_heading_innov_var(float *heading_innov_var); |
|
|
|
// gets the innovation variance of the flow measurement |
|
void get_flow_innov_var(float flow_innov_var[2]); |
|
|
|
// gets the innovation of the flow measurement |
|
void get_flow_innov(float flow_innov[2]); |
|
|
|
// gets the innovation variance of the drag specific force measurement |
|
void get_drag_innov_var(float drag_innov_var[2]); |
|
|
|
// gets the innovation of the drag specific force measurement |
|
void get_drag_innov(float drag_innov[2]); |
|
|
|
// gets the innovation variance of the HAGL measurement |
|
void get_hagl_innov_var(float *hagl_innov_var); |
|
|
|
// gets the innovation of the HAGL measurement |
|
void get_hagl_innov(float *hagl_innov); |
|
|
|
// get the state vector at the delayed time horizon |
|
void get_state_delayed(float *state); |
|
|
|
// get the wind velocity in m/s |
|
void get_wind_velocity(float *wind); |
|
|
|
// get the diagonal elements of the covariance matrix |
|
void get_covariances(float *covariances); |
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined |
|
bool collect_gps(uint64_t time_usec, struct gps_message *gps); |
|
bool collect_imu(imuSample &imu); |
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set |
|
// return true if the origin is valid |
|
bool get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt); |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning); |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position |
|
void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning); |
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty |
|
void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv, bool *dead_reckoning); |
|
|
|
void get_vel_var(Vector3f &vel_var); |
|
|
|
void get_pos_var(Vector3f &pos_var); |
|
|
|
// return an array containing the output predictor angular, velocity and position tracking |
|
// error magnitudes (rad), (m/s), (m) |
|
void get_output_tracking_error(float error[3]); |
|
|
|
/* |
|
Returns following IMU vibration metrics in the following array locations |
|
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle) |
|
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle) |
|
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity) |
|
*/ |
|
void get_imu_vibe_metrics(float vibe[3]); |
|
|
|
// return true if the global position estimate is valid |
|
bool global_position_is_valid(); |
|
|
|
// return true if the EKF is dead reckoning the position using inertial data only |
|
bool inertial_dead_reckoning(); |
|
|
|
// return true if the etimate is valid |
|
// return the estimated terrain vertical position relative to the NED origin |
|
bool get_terrain_vert_pos(float *ret); |
|
|
|
// get the accerometer bias in m/s/s |
|
void get_accel_bias(float bias[3]); |
|
|
|
// get the gyroscope bias in rad/s |
|
void get_gyro_bias(float bias[3]); |
|
|
|
// get GPS check status |
|
void get_gps_check_status(uint16_t *val); |
|
|
|
// return the amount the local vertical position changed in the last reset and the number of reset events |
|
void get_posD_reset(float *delta, uint8_t *counter) {*delta = _state_reset_status.posD_change; *counter = _state_reset_status.posD_counter;} |
|
|
|
// return the amount the local vertical velocity changed in the last reset and the number of reset events |
|
void get_velD_reset(float *delta, uint8_t *counter) {*delta = _state_reset_status.velD_change; *counter = _state_reset_status.velD_counter;} |
|
|
|
// return the amount the local horizontal position changed in the last reset and the number of reset events |
|
void get_posNE_reset(float delta[2], uint8_t *counter) |
|
{ |
|
memcpy(delta, &_state_reset_status.posNE_change._data[0], sizeof(_state_reset_status.posNE_change._data)); |
|
*counter = _state_reset_status.posNE_counter; |
|
} |
|
|
|
// return the amount the local horizontal velocity changed in the last reset and the number of reset events |
|
void get_velNE_reset(float delta[2], uint8_t *counter) |
|
{ |
|
memcpy(delta, &_state_reset_status.velNE_change._data[0], sizeof(_state_reset_status.velNE_change._data)); |
|
*counter = _state_reset_status.velNE_counter; |
|
} |
|
|
|
// return the amount the quaternion has changed in the last reset and the number of reset events |
|
void get_quat_reset(float delta_quat[4], uint8_t *counter) |
|
{ |
|
memcpy(delta_quat, &_state_reset_status.quat_change._data[0], sizeof(_state_reset_status.quat_change._data)); |
|
*counter = _state_reset_status.quat_counter; |
|
} |
|
|
|
// get EKF innovation consistency check status information comprising of: |
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check |
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. |
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF |
|
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned. |
|
void get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl); |
|
|
|
// return a bitmask integer that describes which state estimates can be used for flight control |
|
void get_ekf_soln_status(uint16_t *status); |
|
|
|
private: |
|
|
|
static constexpr uint8_t _k_num_states{24}; |
|
static constexpr float _k_earth_rate{0.000072921f}; |
|
static constexpr float _gravity_mss{9.80665f}; |
|
|
|
// reset event monitoring |
|
// structure containing velocity, position, height and yaw reset information |
|
struct { |
|
uint8_t velNE_counter; // number of horizontal position reset events (allow to wrap if count exceeds 255) |
|
uint8_t velD_counter; // number of vertical velocity reset events (allow to wrap if count exceeds 255) |
|
uint8_t posNE_counter; // number of horizontal position reset events (allow to wrap if count exceeds 255) |
|
uint8_t posD_counter; // number of vertical position reset events (allow to wrap if count exceeds 255) |
|
uint8_t quat_counter; // number of quaternion reset events (allow to wrap if count exceeds 255) |
|
Vector2f velNE_change; // North East velocity change due to last reset (m) |
|
float velD_change; // Down velocity change due to last reset (m/s) |
|
Vector2f posNE_change; // North, East position change due to last reset (m) |
|
float posD_change; // Down position change due to last reset (m) |
|
Quaternion quat_change; // quaternion delta due to last reset - multiply pre-reset quaternion by this to get post-reset quaternion |
|
} _state_reset_status{}; |
|
|
|
float _dt_ekf_avg{0.001f * FILTER_UPDATE_PERIOD_MS}; // average update rate of the ekf |
|
float _dt_update{0.01f}; // delta time since last ekf update. This time can be used for filters |
|
// which run at the same rate as the Ekf::update() function |
|
|
|
stateSample _state{}; // state struct of the ekf running at the delayed time horizon |
|
|
|
bool _filter_initialised{false}; // true when the EKF sttes and covariances been initialised |
|
bool _earth_rate_initialised{false}; // true when we know the earth rotatin rate (requires GPS) |
|
|
|
bool _fuse_height{false}; // baro height data should be fused |
|
bool _fuse_pos{false}; // gps position data should be fused |
|
bool _fuse_hor_vel{false}; // gps horizontal velocity measurement should be fused |
|
bool _fuse_vert_vel{false}; // gps vertical velocity measurement should be fused |
|
|
|
// booleans true when fresh sensor data is available at the fusion time horizon |
|
bool _gps_data_ready{false}; |
|
bool _mag_data_ready{false}; |
|
bool _baro_data_ready{false}; |
|
bool _range_data_ready{false}; |
|
bool _flow_data_ready{false}; |
|
bool _ev_data_ready{false}; |
|
bool _tas_data_ready{false}; |
|
|
|
uint64_t _time_last_fake_gps{0}; // last time in us at which we have faked gps measurement for static mode |
|
|
|
uint64_t _time_last_pos_fuse{0}; // time the last fusion of horizontal position measurements was performed (usec) |
|
uint64_t _time_last_vel_fuse{0}; // time the last fusion of velocity measurements was performed (usec) |
|
uint64_t _time_last_hgt_fuse{0}; // time the last fusion of height measurements was performed (usec) |
|
uint64_t _time_last_of_fuse{0}; // time the last fusion of optical flow measurements were performed (usec) |
|
uint64_t _time_last_arsp_fuse{0}; // time the last fusion of airspeed measurements were performed (usec) |
|
uint64_t _time_last_beta_fuse{0}; // time the last fusion of synthetic sideslip measurements were performed (usec) |
|
Vector2f _last_known_posNE; // last known local NE position vector (m) |
|
float _last_disarmed_posD{0.0f}; // vertical position recorded at arming (m) |
|
float _imu_collection_time_adj{0.0f}; // the amount of time the IMU collection needs to be advanced to meet the target set by FILTER_UPDATE_PERIOD_MS (sec) |
|
|
|
uint64_t _time_acc_bias_check{0}; // last time the accel bias check passed (usec) |
|
|
|
Vector3f _earth_rate_NED; // earth rotation vector (NED) in rad/s |
|
|
|
matrix::Dcm<float> _R_to_earth; // transformation matrix from body frame to earth frame from last EKF predition |
|
|
|
// used by magnetometer fusion mode selection |
|
Vector2f _accel_lpf_NE; // Low pass filtered horizontal earth frame acceleration (m/s**2) |
|
float _yaw_delta_ef{0.0f}; // Recent change in yaw angle measured about the earth frame D axis (rad) |
|
float _yaw_rate_lpf_ef{0.0f}; // Filtered angular rate about earth frame D axis (rad/sec) |
|
bool _mag_bias_observable{false}; // true when there is enough rotation to make magnetometer bias errors observable |
|
bool _yaw_angle_observable{false}; // true when there is enough horizontal acceleration to make yaw observable |
|
uint64_t _time_yaw_started{0}; // last system time in usec that a yaw rotation moaneouvre was detected |
|
|
|
float P[_k_num_states][_k_num_states] {}; // state covariance matrix |
|
|
|
float _vel_pos_innov[6] {}; // innovations: 0-2 vel, 3-5 pos |
|
float _vel_pos_innov_var[6] {}; // innovation variances: 0-2 vel, 3-5 pos |
|
|
|
float _mag_innov[3] {}; // earth magnetic field innovations |
|
float _mag_innov_var[3] {}; // earth magnetic field innovation variance |
|
|
|
float _airspeed_innov{0.0f}; // airspeed measurement innovation |
|
float _airspeed_innov_var{0.0f}; // airspeed measurement innovation variance |
|
|
|
float _beta_innov{0.0f}; // synthetic sideslip measurement innovation |
|
float _beta_innov_var{0.0f}; // synthetic sideslip measurement innovation variance |
|
|
|
float _drag_innov[2] {}; // multirotor drag measurement innovation |
|
float _drag_innov_var[2] {}; // multirotor drag measurement innovation variance |
|
|
|
float _heading_innov{0.0f}; // heading measurement innovation |
|
float _heading_innov_var{0.0f}; // heading measurement innovation variance |
|
|
|
// optical flow processing |
|
float _flow_innov[2] {}; // flow measurement innovation |
|
float _flow_innov_var[2] {}; // flow innovation variance |
|
Vector3f _flow_gyro_bias; // bias errors in optical flow sensor rate gyro outputs |
|
Vector3f _imu_del_ang_of; // bias corrected delta angle measurements accumulated across the same time frame as the optical flow rates |
|
float _delta_time_of{0.0f}; // time in sec that _imu_del_ang_of was accumulated over |
|
|
|
float _mag_declination{0.0f}; // magnetic declination used by reset and fusion functions (rad) |
|
|
|
// output predictor states |
|
Vector3f _delta_angle_corr; // delta angle correction vector |
|
imuSample _imu_down_sampled{}; // down sampled imu data (sensor rate -> filter update rate) |
|
Quaternion _q_down_sampled; // down sampled quaternion (tracking delta angles between ekf update steps) |
|
Vector3f _vel_err_integ; // integral of velocity tracking error |
|
Vector3f _pos_err_integ; // integral of position tracking error |
|
float _output_tracking_error[3] {}; // contains the magnitude of the angle, velocity and position track errors (rad, m/s, m) |
|
|
|
// variables used for the GPS quality checks |
|
float _gpsDriftVelN{0.0f}; // GPS north position derivative (m/s) |
|
float _gpsDriftVelE{0.0f}; // GPS east position derivative (m/s) |
|
float _gps_drift_velD{0.0f}; // GPS down position derivative (m/s) |
|
float _gps_velD_diff_filt{0.0f}; // GPS filtered Down velocity (m/s) |
|
float _gps_velN_filt{0.0f}; // GPS filtered North velocity (m/s) |
|
float _gps_velE_filt{0.0f}; // GPS filtered East velocity (m/s) |
|
uint64_t _last_gps_fail_us{0}; // last system time in usec that the GPS failed it's checks |
|
|
|
// Variables used to publish the WGS-84 location of the EKF local NED origin |
|
uint64_t _last_gps_origin_time_us{0}; // time the origin was last set (uSec) |
|
float _gps_alt_ref{0.0f}; // WGS-84 height (m) |
|
|
|
// Variables used to initialise the filter states |
|
uint32_t _hgt_counter{0}; // number of height samples read during initialisation |
|
float _rng_filt_state{0.0f}; // filtered height measurement |
|
uint32_t _mag_counter{0}; // number of magnetometer samples read during initialisation |
|
uint32_t _ev_counter{0}; // number of exgernal vision samples read during initialisation |
|
uint64_t _time_last_mag{0}; // measurement time of last magnetomter sample |
|
Vector3f _mag_filt_state; // filtered magnetometer measurement |
|
Vector3f _delVel_sum; // summed delta velocity |
|
float _hgt_sensor_offset{0.0f}; // set as necessary if desired to maintain the same height after a height reset (m) |
|
float _baro_hgt_offset{0.0f}; // baro height reading at the local NED origin (m) |
|
|
|
// Variables used to control activation of post takeoff functionality |
|
float _last_on_ground_posD{0.0f}; // last vertical position when the in_air status was false (m) |
|
bool _flt_mag_align_complete{true}; // true when the in-flight mag field alignment has been completed |
|
uint64_t _time_last_movement{0}; // last system time in usec that sufficient movement to use 3-axis magnetometer fusion was detected |
|
float _saved_mag_variance[6] {}; // magnetic field state variances that have been saved for use at the next initialisation (Ga**2) |
|
|
|
gps_check_fail_status_u _gps_check_fail_status{}; |
|
|
|
// variables used to inhibit accel bias learning |
|
bool _accel_bias_inhibit{false}; // true when the accel bias learning is being inhibited |
|
float _accel_mag_filt{0.0f}; // acceleration magnitude after application of a decaying envelope filter (m/sec**2) |
|
float _ang_rate_mag_filt{0.0f}; // angular rate magnitude after application of a decaying envelope filter (rad/sec) |
|
Vector3f _prev_dvel_bias_var; // saved delta velocity XYZ bias variances (m/sec)**2 |
|
|
|
// Terrain height state estimation |
|
float _terrain_vpos{0.0f}; // estimated vertical position of the terrain underneath the vehicle in local NED frame (m) |
|
float _terrain_var{1e4f}; // variance of terrain position estimate (m^2) |
|
float _hagl_innov{0.0f}; // innovation of the last height above terrain measurement (m) |
|
float _hagl_innov_var{0.0f}; // innovation variance for the last height above terrain measurement (m^2) |
|
uint64_t _time_last_hagl_fuse; // last system time in usec that the hagl measurement failed it's checks |
|
bool _terrain_initialised{false}; // true when the terrain estimator has been intialised |
|
float _sin_tilt_rng{0.0f}; // sine of the range finder tilt rotation about the Y body axis |
|
float _cos_tilt_rng{0.0f}; // cosine of the range finder tilt rotation about the Y body axis |
|
float _R_rng_to_earth_2_2{0.0f}; // 2,2 element of the rotation matrix from sensor frame to earth frame |
|
bool _range_data_continuous{false}; // true when we are receiving range finder data faster than a 2Hz average |
|
float _dt_last_range_update_filt_us{0.0f}; // filtered value of the delta time elapsed since the last range measurement came into |
|
// the filter (microseconds) |
|
|
|
// height sensor fault status |
|
bool _baro_hgt_faulty{false}; // true if valid baro data is unavailable for use |
|
bool _gps_hgt_faulty{false}; // true if valid gps height data is unavailable for use |
|
bool _rng_hgt_faulty{false}; // true if valid rnage finder height data is unavailable for use |
|
int _primary_hgt_source{VDIST_SENSOR_BARO}; // priary source of height data set at initialisation |
|
|
|
// imu fault status |
|
uint64_t _time_bad_vert_accel{0}; // last time a bad vertical accel was detected (usec) |
|
uint64_t _time_good_vert_accel{0}; // last time a good vertical accel was detected (usec) |
|
bool _bad_vert_accel_detected{false}; // true when bad vertical accelerometer data has been detected |
|
|
|
// update the real time complementary filter states. This includes the prediction |
|
// and the correction step |
|
void calculateOutputStates(); |
|
|
|
// initialise filter states of both the delayed ekf and the real time complementary filter |
|
bool initialiseFilter(void); |
|
|
|
// initialise ekf covariance matrix |
|
void initialiseCovariance(); |
|
|
|
// predict ekf state |
|
void predictState(); |
|
|
|
// predict ekf covariance |
|
void predictCovariance(); |
|
|
|
// ekf sequential fusion of magnetometer measurements |
|
void fuseMag(); |
|
|
|
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer) |
|
void fuseHeading(); |
|
|
|
// fuse magnetometer declination measurement |
|
void fuseDeclination(); |
|
|
|
// fuse airspeed measurement |
|
void fuseAirspeed(); |
|
|
|
// fuse synthetic zero sideslip measurement |
|
void fuseSideslip(); |
|
|
|
// fuse body frame drag specific forces for multi-rotor wind estimation |
|
void fuseDrag(); |
|
|
|
// fuse velocity and position measurements (also barometer height) |
|
void fuseVelPosHeight(); |
|
|
|
// reset velocity states of the ekf |
|
bool resetVelocity(); |
|
|
|
// fuse optical flow line of sight rate measurements |
|
void fuseOptFlow(); |
|
|
|
// calculate optical flow bias errors |
|
void calcOptFlowBias(); |
|
|
|
// initialise the terrain vertical position estimator |
|
// return true if the initialisation is successful |
|
bool initHagl(); |
|
|
|
// run the terrain estimator |
|
void runTerrainEstimator(); |
|
|
|
// update the terrain vertical position estimate using a height above ground measurement from the range finder |
|
void fuseHagl(); |
|
|
|
// reset the heading and magnetic field states using the declination and magnetometer measurements |
|
// return true if successful |
|
bool resetMagHeading(Vector3f &mag_init); |
|
|
|
// calculate the magnetic declination to be used by the alignment and fusion processing |
|
void calcMagDeclination(); |
|
|
|
// reset position states of the ekf (only vertical position) |
|
bool resetPosition(); |
|
|
|
// reset height state of the ekf |
|
void resetHeight(); |
|
|
|
// modify output filter to match the the EKF state at the fusion time horizon |
|
void alignOutputFilter(); |
|
|
|
// limit the diagonal of the covariance matrix |
|
void fixCovarianceErrors(); |
|
|
|
// make ekf covariance matrix symmetric between a nominated state indexe range |
|
void makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); |
|
|
|
// constrain the ekf states |
|
void constrainStates(); |
|
|
|
// generic function which will perform a fusion step given a kalman gain K |
|
// and a scalar innovation value |
|
void fuse(float *K, float innovation); |
|
|
|
// calculate the earth rotation vector from a given latitude |
|
void calcEarthRateNED(Vector3f &omega, double lat_rad) const; |
|
|
|
// return true id the GPS quality is good enough to set an origin and start aiding |
|
bool gps_is_good(struct gps_message *gps); |
|
|
|
// Control the filter fusion modes |
|
void controlFusionModes(); |
|
|
|
// control fusion of external vision observations |
|
void controlExternalVisionFusion(); |
|
|
|
// control fusion of optical flow observtions |
|
void controlOpticalFlowFusion(); |
|
|
|
// control fusion of GPS observations |
|
void controlGpsFusion(); |
|
|
|
// control fusion of magnetometer observations |
|
void controlMagFusion(); |
|
|
|
// control fusion of range finder observations |
|
void controlRangeFinderFusion(); |
|
|
|
// control fusion of air data observations |
|
void controlAirDataFusion(); |
|
|
|
// control fusion of synthetic sideslip observations |
|
void controlBetaFusion(); |
|
|
|
// control fusion of multi-rotor drag specific force observations |
|
void controlDragFusion(); |
|
|
|
// control fusion of pressure altitude observations |
|
void controlBaroFusion(); |
|
|
|
// control fusion of velocity and position observations |
|
void controlVelPosFusion(); |
|
|
|
// control for height sensor timeouts, sensor changes and state resets |
|
void controlHeightSensorTimeouts(); |
|
|
|
// return the square of two floating point numbers - used in auto coded sections |
|
inline float sq(float var) |
|
{ |
|
return var * var; |
|
} |
|
|
|
// zero the specified range of rows in the state covariance matrix |
|
void zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); |
|
|
|
// zero the specified range of columns in the state covariance matrix |
|
void zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last); |
|
|
|
// calculate the measurement variance for the optical flow sensor |
|
float calcOptFlowMeasVar(); |
|
|
|
// rotate quaternion covariances into variances for an equivalent rotation vector |
|
Vector3f calcRotVecVariances(); |
|
|
|
// initialise the quaternion covariances using rotation vector variances |
|
void initialiseQuatCovariances(Vector3f &rot_vec_var); |
|
|
|
// perform a limited reset of the magnetic field state covariances |
|
void resetMagCovariance(); |
|
|
|
// perform a limited reset of the wind state covariances |
|
void resetWindCovariance(); |
|
|
|
// perform a reset of the wind states |
|
void resetWindStates(); |
|
|
|
// check that the range finder data is continuous |
|
void checkRangeDataContinuity(); |
|
|
|
};
|
|
|