You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

225 lines
7.9 KiB

/****************************************************************************
*
* Copyright (c) 2019 ECL Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <gtest/gtest.h>
#include <math.h>
#include <memory>
#include "EKF/ekf.h"
#include "sensor_simulator/sensor_simulator.h"
#include "sensor_simulator/ekf_wrapper.h"
class EkfInitializationTest : public ::testing::Test {
public:
EkfInitializationTest(): ::testing::Test(),
_ekf{std::make_shared<Ekf>()},
_sensor_simulator(_ekf),
_ekf_wrapper(_ekf) {};
std::shared_ptr<Ekf> _ekf;
SensorSimulator _sensor_simulator;
EkfWrapper _ekf_wrapper;
const float _init_tilt_period = 1.0; // seconds
// GTests is calling this
void SetUp() override
{
_ekf->init(0);
}
// Use this method to clean up any memory, network etc. after each test
void TearDown() override
{
}
void initializedOrienationIsMatchingGroundTruth(Quatf true_quaternion)
{
const Quatf quat_est = _ekf->getQuaternion();
const float precision = 0.0002f; // TODO: this is only required for the pitch90 test to pass
EXPECT_TRUE(matrix::isEqual(quat_est, true_quaternion, precision))
<< "quat est = " << quat_est(0) << ", " << quat_est(1) << ", "
<< quat_est(2) << ", " << quat_est(3)
<< "\nquat true = " << true_quaternion(0) << ", " << true_quaternion(1) << ", "
<< true_quaternion(2) << ", " << true_quaternion(3);
}
void validStateAfterOrientationInitialization()
{
quaternionVarianceBigEnoughAfterOrientationInitialization();
velocityAndPositionCloseToZero();
velocityAndPositionVarianceBigEnoughAfterOrientationInitialization();
}
void quaternionVarianceBigEnoughAfterOrientationInitialization()
{
const matrix::Vector<float, 4> quat_variance = _ekf_wrapper.getQuaternionVariance();
const float quat_variance_limit = 0.0001f;
EXPECT_TRUE(quat_variance(1) > quat_variance_limit) << "quat_variance(1)" << quat_variance(1);
EXPECT_TRUE(quat_variance(2) > quat_variance_limit) << "quat_variance(2)" << quat_variance(2);
EXPECT_TRUE(quat_variance(3) > quat_variance_limit) << "quat_variance(3)" << quat_variance(3);
}
void velocityAndPositionCloseToZero()
{
const Vector3f pos = _ekf->getPosition();
const Vector3f vel = _ekf->getVelocity();
EXPECT_TRUE(matrix::isEqual(pos, Vector3f{}, 0.001f))
<< "pos = " << pos(0) << ", " << pos(1) << ", " << pos(2);
EXPECT_TRUE(matrix::isEqual(vel, Vector3f{}, 0.002f))
<< "vel = " << vel(0) << ", " << vel(1) << ", " << vel(2);
}
void velocityAndPositionVarianceBigEnoughAfterOrientationInitialization()
{
const Vector3f pos_var = _ekf->getPositionVariance();
const Vector3f vel_var = _ekf->getVelocityVariance();
const float pos_variance_limit = 0.2f;
EXPECT_TRUE(pos_var(0) > pos_variance_limit) << "pos_var(0)" << pos_var(0);
EXPECT_TRUE(pos_var(1) > pos_variance_limit) << "pos_var(1)" << pos_var(1);
EXPECT_TRUE(pos_var(2) > pos_variance_limit) << "pos_var(2)" << pos_var(2);
const float vel_variance_limit = 0.3f;
EXPECT_TRUE(vel_var(0) > vel_variance_limit) << "vel_var(0)" << vel_var(0);
EXPECT_TRUE(vel_var(1) > vel_variance_limit) << "vel_var(1)" << vel_var(1);
EXPECT_TRUE(vel_var(2) > vel_variance_limit) << "vel_var(2)" << vel_var(2);
}
void learningCorrectAccelBias()
{
const Dcmf R_to_earth = Dcmf(_ekf->getQuaternion());
const Vector3f dvel_bias_var = _ekf_wrapper.getDeltaVelBiasVariance();
const Vector3f accel_bias = _ekf->getAccelBias();
for (int i = 0; i < 3; i++){
if (fabsf(R_to_earth(2, i)) > 0.8f) {
// Highly observable, the variance decreases
EXPECT_LT(dvel_bias_var(i), 4.0e-6f) << "axis " << i;
} else {
// Poorly observable, the variance is set to 0
EXPECT_FLOAT_EQ(dvel_bias_var(i), 0.f) << "axis" << i;
EXPECT_FLOAT_EQ(accel_bias(i), 0.f) << "axis" << i;
}
}
}
};
TEST_F(EkfInitializationTest, initializeWithZeroTilt)
{
const float pitch = math::radians(0.0f);
const float roll = math::radians(0.0f);
const Eulerf euler_angles_sim(roll, pitch, 0.0f);
const Quatf quat_sim(euler_angles_sim);
_sensor_simulator.simulateOrientation(quat_sim);
_sensor_simulator.runSeconds(_init_tilt_period);
initializedOrienationIsMatchingGroundTruth(quat_sim);
validStateAfterOrientationInitialization();
_sensor_simulator.runSeconds(1.f);
learningCorrectAccelBias();
}
TEST_F(EkfInitializationTest, initializeHeadingWithZeroTilt)
{
const float pitch = math::radians(0.0f);
const float roll = math::radians(0.0f);
const float yaw = math::radians(90.0f);
const Eulerf euler_angles_sim(roll, pitch, yaw);
const Quatf quat_sim(euler_angles_sim);
_sensor_simulator.simulateOrientation(quat_sim);
_sensor_simulator.runSeconds(_init_tilt_period);
initializedOrienationIsMatchingGroundTruth(quat_sim);
validStateAfterOrientationInitialization();
_sensor_simulator.runSeconds(1.f);
learningCorrectAccelBias();
}
TEST_F(EkfInitializationTest, initializeWithTilt)
{
const float pitch = math::radians(30.0f);
const float roll = math::radians(60.0f);
const Eulerf euler_angles_sim(roll, pitch, 0.0f);
const Quatf quat_sim(euler_angles_sim);
_sensor_simulator.simulateOrientation(quat_sim);
_sensor_simulator.runSeconds(_init_tilt_period);
initializedOrienationIsMatchingGroundTruth(quat_sim);
validStateAfterOrientationInitialization();
_sensor_simulator.runSeconds(1.f);
learningCorrectAccelBias();
}
TEST_F(EkfInitializationTest, initializeWithPitch90)
{
const float pitch = math::radians(90.0f);
const float roll = math::radians(0.0f);
const Eulerf euler_angles_sim(roll, pitch, 0.0f);
const Quatf quat_sim(euler_angles_sim);
_sensor_simulator.simulateOrientation(quat_sim);
_sensor_simulator.runSeconds(_init_tilt_period);
initializedOrienationIsMatchingGroundTruth(quat_sim);
// TODO: Quaternion Variance is smaller and vel x is larger
// in this case than in the other cases
validStateAfterOrientationInitialization();
_sensor_simulator.runSeconds(1.f);
learningCorrectAccelBias();
}
TEST_F(EkfInitializationTest, initializeWithRoll90)
{
const float pitch = math::radians(0.0f);
const float roll = math::radians(90.0f);
const Eulerf euler_angles_sim(roll, pitch, 0.0f);
const Quatf quat_sim(euler_angles_sim);
_sensor_simulator.simulateOrientation(quat_sim);
_sensor_simulator.runSeconds(_init_tilt_period);
initializedOrienationIsMatchingGroundTruth(quat_sim);
validStateAfterOrientationInitialization();
_sensor_simulator.runSeconds(1.f);
learningCorrectAccelBias();
}