You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
160 lines
3.7 KiB
160 lines
3.7 KiB
/** |
|
* @file Euler.hpp |
|
* |
|
* All rotations and axis systems follow the right-hand rule |
|
* |
|
* An instance of this class defines a rotation from coordinate frame 1 to coordinate frame 2. |
|
* It follows the convention of a 3-2-1 intrinsic Tait-Bryan rotation sequence. |
|
* In order to go from frame 1 to frame 2 we apply the following rotations consecutively. |
|
* 1) We rotate about our initial Z axis by an angle of _psi. |
|
* 2) We rotate about the newly created Y' axis by an angle of _theta. |
|
* 3) We rotate about the newly created X'' axis by an angle of _phi. |
|
* |
|
* @author James Goppert <james.goppert@gmail.com> |
|
*/ |
|
|
|
#pragma once |
|
|
|
#include "math.hpp" |
|
|
|
namespace matrix |
|
{ |
|
|
|
template <typename Type> |
|
class Dcm; |
|
|
|
template <typename Type> |
|
class Quaternion; |
|
|
|
/** |
|
* Euler angles class |
|
* |
|
* This class describes the rotation from frame 1 |
|
* to frame 2 via 3-2-1 intrinsic Tait-Bryan rotation sequence. |
|
*/ |
|
template<typename Type> |
|
class Euler : public Vector<Type, 3> |
|
{ |
|
public: |
|
/** |
|
* Standard constructor |
|
*/ |
|
Euler() = default; |
|
|
|
/** |
|
* Copy constructor |
|
* |
|
* @param other vector to copy |
|
*/ |
|
Euler(const Vector<Type, 3> &other) : |
|
Vector<Type, 3>(other) |
|
{ |
|
} |
|
|
|
/** |
|
* Constructor from Matrix31 |
|
* |
|
* @param other Matrix31 to copy |
|
*/ |
|
Euler(const Matrix<Type, 3, 1> &other) : |
|
Vector<Type, 3>(other) |
|
{ |
|
} |
|
|
|
/** |
|
* Constructor from euler angles |
|
* |
|
* Instance is initialized from an 3-2-1 intrinsic Tait-Bryan |
|
* rotation sequence representing transformation from frame 1 |
|
* to frame 2. |
|
* |
|
* @param phi_ rotation angle about X axis |
|
* @param theta_ rotation angle about Y axis |
|
* @param psi_ rotation angle about Z axis |
|
*/ |
|
Euler(Type phi_, Type theta_, Type psi_) : Vector<Type, 3>() |
|
{ |
|
phi() = phi_; |
|
theta() = theta_; |
|
psi() = psi_; |
|
} |
|
|
|
/** |
|
* Constructor from DCM matrix |
|
* |
|
* Instance is set from Dcm representing transformation from |
|
* frame 2 to frame 1. |
|
* This instance will hold the angles defining the 3-2-1 intrinsic |
|
* Tait-Bryan rotation sequence from frame 1 to frame 2. |
|
* |
|
* @param dcm Direction cosine matrix |
|
*/ |
|
Euler(const Dcm<Type> &dcm) |
|
{ |
|
Type phi_val = Type(atan2(dcm(2, 1), dcm(2, 2))); |
|
Type theta_val = Type(asin(-dcm(2, 0))); |
|
Type psi_val = Type(atan2(dcm(1, 0), dcm(0, 0))); |
|
Type pi = Type(M_PI); |
|
|
|
if (Type(fabs(theta_val - pi / Type(2))) < Type(1.0e-3)) { |
|
phi_val = Type(0); |
|
psi_val = Type(atan2(dcm(1, 2), dcm(0, 2))); |
|
|
|
} else if (Type(fabs(theta_val + pi / Type(2))) < Type(1.0e-3)) { |
|
phi_val = Type(0); |
|
psi_val = Type(atan2(-dcm(1, 2), -dcm(0, 2))); |
|
} |
|
|
|
phi() = phi_val; |
|
theta() = theta_val; |
|
psi() = psi_val; |
|
} |
|
|
|
/** |
|
* Constructor from quaternion instance. |
|
* |
|
* Instance is set from a quaternion representing transformation |
|
* from frame 2 to frame 1. |
|
* This instance will hold the angles defining the 3-2-1 intrinsic |
|
* Tait-Bryan rotation sequence from frame 1 to frame 2. |
|
* |
|
* @param q quaternion |
|
*/ |
|
Euler(const Quaternion<Type> &q) |
|
{ |
|
*this = Euler(Dcm<Type>(q)); |
|
} |
|
|
|
inline Type phi() const |
|
{ |
|
return (*this)(0); |
|
} |
|
inline Type theta() const |
|
{ |
|
return (*this)(1); |
|
} |
|
inline Type psi() const |
|
{ |
|
return (*this)(2); |
|
} |
|
|
|
inline Type &phi() |
|
{ |
|
return (*this)(0); |
|
} |
|
inline Type &theta() |
|
{ |
|
return (*this)(1); |
|
} |
|
inline Type &psi() |
|
{ |
|
return (*this)(2); |
|
} |
|
|
|
}; |
|
|
|
typedef Euler<float> Eulerf; |
|
|
|
} // namespace matrix |
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|
|
|