You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
9.2 KiB
297 lines
9.2 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2018 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file gps_yaw_fusion.cpp |
|
* Definition of functions required to use yaw obtained from GPS dual antenna measurements. |
|
* |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
|
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
#include <cstdlib> |
|
|
|
void Ekf::fuseGpsAntYaw() |
|
{ |
|
// assign intermediate state variables |
|
const float q0 = _state.quat_nominal(0); |
|
const float q1 = _state.quat_nominal(1); |
|
const float q2 = _state.quat_nominal(2); |
|
const float q3 = _state.quat_nominal(3); |
|
|
|
float H_YAW[4]; |
|
|
|
// calculate the observed yaw angle of antenna array, converting a from body to antenna yaw measurement |
|
const float measured_hdg = wrap_pi(_gps_sample_delayed.yaw + _gps_yaw_offset); |
|
|
|
// define the predicted antenna array vector and rotate into earth frame |
|
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; |
|
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; |
|
|
|
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading |
|
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { |
|
return; |
|
} |
|
|
|
// calculate predicted antenna yaw angle |
|
const float predicted_hdg = atan2f(ant_vec_ef(1),ant_vec_ef(0)); |
|
|
|
// calculate observation jacobian |
|
float t2 = sinf(_gps_yaw_offset); |
|
float t3 = cosf(_gps_yaw_offset); |
|
float t4 = q0*q3*2.0f; |
|
float t5 = q0*q0; |
|
float t6 = q1*q1; |
|
float t7 = q2*q2; |
|
float t8 = q3*q3; |
|
float t9 = q1*q2*2.0f; |
|
float t10 = t5+t6-t7-t8; |
|
float t11 = t3*t10; |
|
float t12 = t4+t9; |
|
float t13 = t3*t12; |
|
float t14 = t5-t6+t7-t8; |
|
float t15 = t2*t14; |
|
float t16 = t13+t15; |
|
float t17 = t4-t9; |
|
float t19 = t2*t17; |
|
float t20 = t11-t19; |
|
float t18 = (t20*t20); |
|
if (t18 < 1e-6f) { |
|
return; |
|
} |
|
t18 = 1.0f / t18; |
|
float t21 = t16*t16; |
|
float t22 = sq(t11-t19); |
|
if (t22 < 1e-6f) { |
|
return; |
|
} |
|
t22 = 1.0f/t22; |
|
float t23 = q1*t3*2.0f; |
|
float t24 = q2*t2*2.0f; |
|
float t25 = t23+t24; |
|
float t26 = 1.0f/t20; |
|
float t27 = q1*t2*2.0f; |
|
float t28 = t21*t22; |
|
float t29 = t28+1.0f; |
|
if (fabsf(t29) < 1e-6f) { |
|
return; |
|
} |
|
float t30 = 1.0f/t29; |
|
float t31 = q0*t3*2.0f; |
|
float t32 = t31-q3*t2*2.0f; |
|
float t33 = q3*t3*2.0f; |
|
float t34 = q0*t2*2.0f; |
|
float t35 = t33+t34; |
|
|
|
H_YAW[0] = (t35/(t11-t2*(t4-q1*q2*2.0f))-t16*t18*t32)/(t18*t21+1.0f); |
|
H_YAW[1] = -t30*(t26*(t27-q2*t3*2.0f)+t16*t22*t25); |
|
H_YAW[2] = t30*(t25*t26-t16*t22*(t27-q2*t3*2.0f)); |
|
H_YAW[3] = t30*(t26*t32+t16*t22*t35); |
|
|
|
// using magnetic heading tuning parameter |
|
const float R_YAW = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); |
|
|
|
// calculate the innovation and define the innovation gate |
|
float innov_gate = math::max(_params.heading_innov_gate, 1.0f); |
|
_heading_innov = predicted_hdg - measured_hdg; |
|
|
|
// wrap the innovation to the interval between +-pi |
|
_heading_innov = wrap_pi(_heading_innov); |
|
|
|
// Calculate innovation variance and Kalman gains, taking advantage of the fact that only the first 3 elements in H are non zero |
|
// calculate the innovation variance |
|
float PH[4]; |
|
_heading_innov_var = R_YAW; |
|
|
|
for (unsigned row = 0; row <= 3; row++) { |
|
PH[row] = 0.0f; |
|
|
|
for (uint8_t col = 0; col <= 3; col++) { |
|
PH[row] += P(row,col) * H_YAW[col]; |
|
} |
|
|
|
_heading_innov_var += H_YAW[row] * PH[row]; |
|
} |
|
|
|
float heading_innov_var_inv; |
|
|
|
// check if the innovation variance calculation is badly conditioned |
|
if (_heading_innov_var >= R_YAW) { |
|
// the innovation variance contribution from the state covariances is not negative, no fault |
|
_fault_status.flags.bad_hdg = false; |
|
heading_innov_var_inv = 1.0f / _heading_innov_var; |
|
|
|
} else { |
|
// the innovation variance contribution from the state covariances is negative which means the covariance matrix is badly conditioned |
|
_fault_status.flags.bad_hdg = true; |
|
|
|
// we reinitialise the covariance matrix and abort this fusion step |
|
initialiseCovariance(); |
|
ECL_ERR_TIMESTAMPED("GPS yaw numerical error - covariance reset"); |
|
return; |
|
} |
|
|
|
// calculate the Kalman gains |
|
// only calculate gains for states we are using |
|
float Kfusion[_k_num_states] = {}; |
|
|
|
for (uint8_t row = 0; row <= 15; row++) { |
|
Kfusion[row] = 0.0f; |
|
|
|
for (uint8_t col = 0; col <= 3; col++) { |
|
Kfusion[row] += P(row,col) * H_YAW[col]; |
|
} |
|
|
|
Kfusion[row] *= heading_innov_var_inv; |
|
} |
|
|
|
if (_control_status.flags.wind) { |
|
for (uint8_t row = 22; row <= 23; row++) { |
|
Kfusion[row] = 0.0f; |
|
|
|
for (uint8_t col = 0; col <= 3; col++) { |
|
Kfusion[row] += P(row,col) * H_YAW[col]; |
|
} |
|
|
|
Kfusion[row] *= heading_innov_var_inv; |
|
} |
|
} |
|
|
|
// innovation test ratio |
|
_yaw_test_ratio = sq(_heading_innov) / (sq(innov_gate) * _heading_innov_var); |
|
|
|
// we are no longer using 3-axis fusion so set the reported test levels to zero |
|
_mag_test_ratio.setZero(); |
|
|
|
if (_yaw_test_ratio > 1.0f) { |
|
_innov_check_fail_status.flags.reject_yaw = true; |
|
|
|
// if we are in air we don't want to fuse the measurement |
|
// we allow to use it when on the ground because the large innovation could be caused |
|
// by interference or a large initial gyro bias |
|
if (_control_status.flags.in_air) { |
|
return; |
|
|
|
} else { |
|
// constrain the innovation to the maximum set by the gate |
|
float gate_limit = sqrtf((sq(innov_gate) * _heading_innov_var)); |
|
_heading_innov = math::constrain(_heading_innov, -gate_limit, gate_limit); |
|
} |
|
|
|
} else { |
|
_innov_check_fail_status.flags.reject_yaw = false; |
|
} |
|
|
|
// apply covariance correction via P_new = (I -K*H)*P |
|
// first calculate expression for KHP |
|
// then calculate P - KHP |
|
matrix::SquareMatrix<float, _k_num_states> KHP; |
|
float KH[4]; |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
|
|
KH[0] = Kfusion[row] * H_YAW[0]; |
|
KH[1] = Kfusion[row] * H_YAW[1]; |
|
KH[2] = Kfusion[row] * H_YAW[2]; |
|
KH[3] = Kfusion[row] * H_YAW[3]; |
|
|
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
float tmp = KH[0] * P(0,column); |
|
tmp += KH[1] * P(1,column); |
|
tmp += KH[2] * P(2,column); |
|
tmp += KH[3] * P(3,column); |
|
KHP(row,column) = tmp; |
|
} |
|
} |
|
|
|
// if the covariance correction will result in a negative variance, then |
|
// the covariance matrix is unhealthy and must be corrected |
|
bool healthy = true; |
|
_fault_status.flags.bad_hdg = false; |
|
|
|
for (int i = 0; i < _k_num_states; i++) { |
|
if (P(i,i) < KHP(i,i)) { |
|
// zero rows and columns |
|
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f); |
|
|
|
//flag as unhealthy |
|
healthy = false; |
|
|
|
// update individual measurement health status |
|
_fault_status.flags.bad_hdg = true; |
|
|
|
} |
|
} |
|
|
|
// only apply covariance and state corrections if healthy |
|
if (healthy) { |
|
_time_last_gps_yaw_fuse = _time_last_imu; |
|
// apply the covariance corrections |
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
P(row,column) = P(row,column) - KHP(row,column); |
|
} |
|
} |
|
|
|
// correct the covariance matrix for gross errors |
|
fixCovarianceErrors(true); |
|
|
|
// apply the state corrections |
|
fuse(Kfusion, _heading_innov); |
|
|
|
} |
|
} |
|
|
|
bool Ekf::resetGpsAntYaw() |
|
{ |
|
// define the predicted antenna array vector and rotate into earth frame |
|
const Vector3f ant_vec_bf = {cosf(_gps_yaw_offset), sinf(_gps_yaw_offset), 0.0f}; |
|
const Vector3f ant_vec_ef = _R_to_earth * ant_vec_bf; |
|
|
|
// check if antenna array vector is within 30 degrees of vertical and therefore unable to provide a reliable heading |
|
if (fabsf(ant_vec_ef(2)) > cosf(math::radians(30.0f))) { |
|
return false; |
|
} |
|
|
|
// get measurement and correct for antenna array yaw offset |
|
const float measured_yaw = _gps_sample_delayed.yaw + _gps_yaw_offset; |
|
|
|
const float yaw_variance = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)); |
|
resetQuatStateYaw(measured_yaw, yaw_variance, true); |
|
|
|
return true; |
|
}
|
|
|