You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
548 lines
23 KiB
548 lines
23 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file estimator_interface.h |
|
* Definition of base class for attitude estimators |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "common.h" |
|
#include "RingBuffer.h" |
|
|
|
#include <geo/geo.h> |
|
#include <matrix/math.hpp> |
|
#include <mathlib/mathlib.h> |
|
|
|
using namespace estimator; |
|
|
|
class EstimatorInterface |
|
{ |
|
|
|
public: |
|
EstimatorInterface() = default; |
|
virtual ~EstimatorInterface() = default; |
|
|
|
virtual bool init(uint64_t timestamp) = 0; |
|
virtual bool update() = 0; |
|
|
|
// gets the innovations of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
virtual void get_vel_pos_innov(float vel_pos_innov[6]) = 0; |
|
|
|
// gets the innovations for of the NE auxiliary velocity measurement |
|
virtual void get_aux_vel_innov(float aux_vel_innov[2]) = 0; |
|
|
|
// gets the innovations of the earth magnetic field measurements |
|
virtual void get_mag_innov(float mag_innov[3]) = 0; |
|
|
|
// gets the innovation of airspeed measurement |
|
virtual void get_airspeed_innov(float *airspeed_innov) = 0; |
|
|
|
// gets the innovation of the synthetic sideslip measurement |
|
virtual void get_beta_innov(float *beta_innov) = 0; |
|
|
|
// gets the innovations of the heading measurement |
|
virtual void get_heading_innov(float *heading_innov) = 0; |
|
|
|
// gets the innovation variances of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
virtual void get_vel_pos_innov_var(float vel_pos_innov_var[6]) = 0; |
|
|
|
// gets the innovation variances of the earth magnetic field measurements |
|
virtual void get_mag_innov_var(float mag_innov_var[3]) = 0; |
|
|
|
// gets the innovation variance of the airspeed measurement |
|
virtual void get_airspeed_innov_var(float *get_airspeed_innov_var) = 0; |
|
|
|
// gets the innovation variance of the synthetic sideslip measurement |
|
virtual void get_beta_innov_var(float *get_beta_innov_var) = 0; |
|
|
|
// gets the innovation variance of the heading measurement |
|
virtual void get_heading_innov_var(float *heading_innov_var) = 0; |
|
|
|
virtual void get_state_delayed(float *state) = 0; |
|
|
|
virtual void get_wind_velocity(float *wind) = 0; |
|
|
|
virtual void get_wind_velocity_var(float *wind_var) = 0; |
|
|
|
virtual void get_true_airspeed(float *tas) = 0; |
|
|
|
virtual void get_covariances(float *covariances) = 0; |
|
|
|
// gets the variances for the NED velocity states |
|
virtual void get_vel_var(Vector3f &vel_var) = 0; |
|
|
|
// gets the variances for the NED position states |
|
virtual void get_pos_var(Vector3f &pos_var) = 0; |
|
|
|
// gets the innovation variance of the flow measurement |
|
virtual void get_flow_innov_var(float flow_innov_var[2]) = 0; |
|
|
|
// gets the innovation of the flow measurement |
|
virtual void get_flow_innov(float flow_innov[2]) = 0; |
|
|
|
// gets the innovation variance of the drag specific force measurement |
|
virtual void get_drag_innov_var(float drag_innov_var[2]) = 0; |
|
|
|
// gets the innovation of the drag specific force measurement |
|
virtual void get_drag_innov(float drag_innov[2]) = 0; |
|
|
|
// gets the innovation variance of the HAGL measurement |
|
virtual void get_hagl_innov_var(float *flow_innov_var) = 0; |
|
|
|
// gets the innovation of the HAGL measurement |
|
virtual void get_hagl_innov(float *flow_innov_var) = 0; |
|
|
|
// return an array containing the output predictor angular, velocity and position tracking |
|
// error magnitudes (rad), (m/s), (m) |
|
virtual void get_output_tracking_error(float error[3]) = 0; |
|
|
|
/* |
|
Returns following IMU vibration metrics in the following array locations |
|
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle) |
|
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle) |
|
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity) |
|
*/ |
|
virtual void get_imu_vibe_metrics(float vibe[3]) = 0; |
|
|
|
// get the ekf WGS-84 origin position and height and the system time it was last set |
|
// return true if the origin is valid |
|
virtual bool get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) = 0; |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
virtual void get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv) = 0; |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position |
|
virtual void get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv) = 0; |
|
|
|
// get the 1-sigma horizontal and vertical velocity uncertainty |
|
virtual void get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv) = 0; |
|
|
|
// get the vehicle control limits required by the estimator to keep within sensor limitations |
|
virtual void get_ekf_ctrl_limits(float *vxy_max, float *vz_max, float *hagl_min, float *hagl_max) = 0; |
|
|
|
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined |
|
virtual bool collect_gps(uint64_t time_usec, struct gps_message *gps) { return true; } |
|
|
|
// accumulate and downsample IMU data to the EKF prediction rate |
|
virtual bool collect_imu(imuSample &imu) { return true; } |
|
|
|
// set delta angle imu data |
|
void setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, float (&delta_ang)[3], float (&delta_vel)[3]); |
|
|
|
// set magnetometer data |
|
void setMagData(uint64_t time_usec, float (&data)[3]); |
|
|
|
// set gps data |
|
void setGpsData(uint64_t time_usec, struct gps_message *gps); |
|
|
|
// set baro data |
|
void setBaroData(uint64_t time_usec, float data); |
|
|
|
// set airspeed data |
|
void setAirspeedData(uint64_t time_usec, float true_airspeed, float eas2tas); |
|
|
|
// set range data |
|
void setRangeData(uint64_t time_usec, float data); |
|
|
|
// set optical flow data |
|
// if optical flow sensor gyro delta angles are not available, set gyroXYZ vector fields to NaN and the EKF will use its internal delta angle data instead |
|
void setOpticalFlowData(uint64_t time_usec, flow_message *flow); |
|
|
|
// set external vision position and attitude data |
|
void setExtVisionData(uint64_t time_usec, ext_vision_message *evdata); |
|
|
|
// set auxiliary velocity data |
|
void setAuxVelData(uint64_t time_usec, float (&data)[2], float (&variance)[2]); |
|
|
|
// return a address to the parameters struct |
|
// in order to give access to the application |
|
parameters *getParamHandle() {return &_params;} |
|
|
|
// set vehicle landed status data |
|
void set_in_air_status(bool in_air) {_control_status.flags.in_air = in_air;} |
|
|
|
/* |
|
Reset all IMU bias states and covariances to initial alignment values. |
|
Use when the IMU sensor has changed. |
|
Returns true if reset performed, false if rejected due to less than 10 seconds lapsed since last reset. |
|
*/ |
|
virtual bool reset_imu_bias() = 0; |
|
|
|
// get vehicle landed status data |
|
bool get_in_air_status() {return _control_status.flags.in_air;} |
|
|
|
// get wind estimation status |
|
bool get_wind_status() { return _control_status.flags.wind; } |
|
|
|
// set vehicle is fixed wing status |
|
void set_is_fixed_wing(bool is_fixed_wing) {_control_status.flags.fixed_wing = is_fixed_wing;} |
|
|
|
// set flag if synthetic sideslip measurement should be fused |
|
void set_fuse_beta_flag(bool fuse_beta) {_control_status.flags.fuse_beta = (fuse_beta && _control_status.flags.in_air);} |
|
|
|
// set flag if static pressure rise due to ground effect is expected |
|
// use _params.gnd_effect_deadzone to adjust for expected rise in static pressure |
|
// flag will clear after GNDEFFECT_TIMEOUT uSec |
|
void set_gnd_effect_flag(bool gnd_effect) |
|
{ |
|
_control_status.flags.gnd_effect = gnd_effect; |
|
_time_last_gnd_effect_on = _time_last_imu; |
|
} |
|
|
|
// set flag if only only mag states should be updated by the magnetometer |
|
void set_update_mag_states_only_flag(bool update_mag_states_only) {_control_status.flags.update_mag_states_only = update_mag_states_only;} |
|
|
|
// set air density used by the multi-rotor specific drag force fusion |
|
void set_air_density(float air_density) {_air_density = air_density;} |
|
|
|
// set sensor limitations reported by the rangefinder |
|
void set_rangefinder_limits(float min_distance, float max_distance) |
|
{ |
|
_rng_min_distance = min_distance; |
|
_rng_max_distance = max_distance; |
|
} |
|
|
|
// set sensor limitations reported by the optical flow sensor |
|
void set_optical_flow_limits(float max_flow_rate, float min_distance, float max_distance) |
|
{ |
|
_flow_max_rate = max_flow_rate; |
|
_flow_min_distance = min_distance; |
|
_flow_max_distance = max_distance; |
|
} |
|
|
|
// return true if the global position estimate is valid |
|
virtual bool global_position_is_valid() = 0; |
|
|
|
// return true if the EKF is dead reckoning the position using inertial data only |
|
bool inertial_dead_reckoning() {return _is_dead_reckoning;} |
|
|
|
// return true if the terrain estimate is valid |
|
virtual bool get_terrain_valid() = 0; |
|
|
|
// get the estimated terrain vertical position relative to the NED origin |
|
virtual void get_terrain_vert_pos(float *ret) = 0; |
|
|
|
// return true if the local position estimate is valid |
|
bool local_position_is_valid(); |
|
|
|
void copy_quaternion(float *quat) |
|
{ |
|
for (unsigned i = 0; i < 4; i++) { |
|
quat[i] = _output_new.quat_nominal(i); |
|
} |
|
} |
|
|
|
// return the quaternion defining the rotation from the EKF to the External Vision reference frame |
|
virtual void get_ekf2ev_quaternion(float *quat) = 0; |
|
|
|
// get the velocity of the body frame origin in local NED earth frame |
|
void get_velocity(float *vel) |
|
{ |
|
Vector3f vel_earth = _output_new.vel - _vel_imu_rel_body_ned; |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
vel[i] = vel_earth(i); |
|
} |
|
} |
|
|
|
// get the NED velocity derivative in earth frame |
|
void get_vel_deriv_ned(float *vel_deriv) |
|
{ |
|
for (unsigned i = 0; i < 3; i++) { |
|
vel_deriv[i] = _vel_deriv_ned(i); |
|
} |
|
} |
|
|
|
// get the derivative of the vertical position of the body frame origin in local NED earth frame |
|
void get_pos_d_deriv(float *pos_d_deriv) |
|
{ |
|
float var = _output_vert_new.vel_d - _vel_imu_rel_body_ned(2); |
|
*pos_d_deriv = var; |
|
} |
|
|
|
// get the position of the body frame origin in local NED earth frame |
|
void get_position(float *pos) |
|
{ |
|
// rotate the position of the IMU relative to the boy origin into earth frame |
|
Vector3f pos_offset_earth = _R_to_earth_now * _params.imu_pos_body; |
|
|
|
// subtract from the EKF position (which is at the IMU) to get position at the body origin |
|
for (unsigned i = 0; i < 3; i++) { |
|
pos[i] = _output_new.pos(i) - pos_offset_earth(i); |
|
} |
|
} |
|
void copy_timestamp(uint64_t *time_us) |
|
{ |
|
*time_us = _time_last_imu; |
|
} |
|
|
|
// Copy the magnetic declination that we wish to save to the EKF2_MAG_DECL parameter for the next startup |
|
void copy_mag_decl_deg(float *val) |
|
{ |
|
*val = _mag_declination_to_save_deg; |
|
} |
|
|
|
virtual void get_accel_bias(float bias[3]) = 0; |
|
virtual void get_gyro_bias(float bias[3]) = 0; |
|
|
|
// get EKF mode status |
|
void get_control_mode(uint32_t *val) |
|
{ |
|
*val = _control_status.value; |
|
} |
|
|
|
// get EKF internal fault status |
|
void get_filter_fault_status(uint16_t *val) |
|
{ |
|
*val = _fault_status.value; |
|
} |
|
|
|
// get GPS check status |
|
virtual void get_gps_check_status(uint16_t *val) = 0; |
|
|
|
// return the amount the local vertical position changed in the last reset and the number of reset events |
|
virtual void get_posD_reset(float *delta, uint8_t *counter) = 0; |
|
|
|
// return the amount the local vertical velocity changed in the last reset and the number of reset events |
|
virtual void get_velD_reset(float *delta, uint8_t *counter) = 0; |
|
|
|
// return the amount the local horizontal position changed in the last reset and the number of reset events |
|
virtual void get_posNE_reset(float delta[2], uint8_t *counter) = 0; |
|
|
|
// return the amount the local horizontal velocity changed in the last reset and the number of reset events |
|
virtual void get_velNE_reset(float delta[2], uint8_t *counter) = 0; |
|
|
|
// return the amount the quaternion has changed in the last reset and the number of reset events |
|
virtual void get_quat_reset(float delta_quat[4], uint8_t *counter) = 0; |
|
|
|
// get EKF innovation consistency check status information comprising of: |
|
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check |
|
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold. |
|
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF |
|
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned. |
|
virtual void get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl, float *beta) = 0; |
|
|
|
// return a bitmask integer that describes which state estimates can be used for flight control |
|
virtual void get_ekf_soln_status(uint16_t *status) = 0; |
|
|
|
// Getter for the average imu update period in s |
|
float get_dt_imu_avg() |
|
{ |
|
return _dt_imu_avg; |
|
} |
|
|
|
// Getter for the imu sample on the delayed time horizon |
|
imuSample get_imu_sample_delayed() |
|
{ |
|
return _imu_sample_delayed; |
|
} |
|
|
|
// Getter for the baro sample on the delayed time horizon |
|
baroSample get_baro_sample_delayed() |
|
{ |
|
return _baro_sample_delayed; |
|
} |
|
|
|
// Getter for a flag indicating if the ekf should update (completed downsampling process) |
|
bool get_imu_updated() |
|
{ |
|
return _imu_updated; |
|
} |
|
|
|
void print_status(); |
|
|
|
static const unsigned FILTER_UPDATE_PERIOD_MS = 8; // ekf prediction period in milliseconds - this should ideally be an integer multiple of the IMU time delta |
|
|
|
protected: |
|
|
|
parameters _params; // filter parameters |
|
|
|
/* |
|
OBS_BUFFER_LENGTH defines how many observations (non-IMU measurements) we can buffer |
|
which sets the maximum frequency at which we can process non-IMU measurements. Measurements that |
|
arrive too soon after the previous measurement will not be processed. |
|
max freq (Hz) = (OBS_BUFFER_LENGTH - 1) / (IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS * 0.001) |
|
This can be adjusted to match the max sensor data rate plus some margin for jitter. |
|
*/ |
|
uint8_t _obs_buffer_length{0}; |
|
|
|
/* |
|
IMU_BUFFER_LENGTH defines how many IMU samples we buffer which sets the time delay from current time to the |
|
EKF fusion time horizon and therefore the maximum sensor time offset relative to the IMU that we can compensate for. |
|
max sensor time offet (msec) = IMU_BUFFER_LENGTH * FILTER_UPDATE_PERIOD_MS |
|
This can be adjusted to a value that is FILTER_UPDATE_PERIOD_MS longer than the maximum observation time delay. |
|
*/ |
|
uint8_t _imu_buffer_length{0}; |
|
|
|
unsigned _min_obs_interval_us{0}; // minimum time interval between observations that will guarantee data is not lost (usec) |
|
|
|
float _dt_imu_avg{0.0f}; // average imu update period in s |
|
|
|
imuSample _imu_sample_delayed{}; // captures the imu sample on the delayed time horizon |
|
|
|
// measurement samples capturing measurements on the delayed time horizon |
|
magSample _mag_sample_delayed{}; |
|
baroSample _baro_sample_delayed{}; |
|
gpsSample _gps_sample_delayed{}; |
|
rangeSample _range_sample_delayed{}; |
|
airspeedSample _airspeed_sample_delayed{}; |
|
flowSample _flow_sample_delayed{}; |
|
extVisionSample _ev_sample_delayed{}; |
|
dragSample _drag_sample_delayed{}; |
|
dragSample _drag_down_sampled{}; // down sampled drag specific force data (filter prediction rate -> observation rate) |
|
auxVelSample _auxvel_sample_delayed{}; |
|
|
|
// Used by the multi-rotor specific drag force fusion |
|
uint8_t _drag_sample_count{0}; // number of drag specific force samples assumulated at the filter prediction rate |
|
float _drag_sample_time_dt{0.0f}; // time integral across all samples used to form _drag_down_sampled (sec) |
|
float _air_density{CONSTANTS_AIR_DENSITY_SEA_LEVEL_15C}; // air density (kg/m**3) |
|
|
|
// Sensor limitations |
|
float _rng_min_distance{0.0f}; ///< minimum distance that the rangefinder can measure (m) |
|
float _rng_max_distance{0.0f}; ///< maximum distance that the rangefinder can measure (m) |
|
float _flow_max_rate{0.0f}; ///< maximum angular flow rate that the optical flow sensor can measure (rad/s) |
|
float _flow_min_distance{0.0f}; ///< minimum distance that the optical flow sensor can operate at (m) |
|
float _flow_max_distance{0.0f}; ///< maximum distance that the optical flow sensor can operate at (m) |
|
|
|
// Output Predictor |
|
outputSample _output_sample_delayed{}; // filter output on the delayed time horizon |
|
outputSample _output_new{}; // filter output on the non-delayed time horizon |
|
outputVert _output_vert_delayed{}; // vertical filter output on the delayed time horizon |
|
outputVert _output_vert_new{}; // vertical filter output on the non-delayed time horizon |
|
imuSample _imu_sample_new{}; // imu sample capturing the newest imu data |
|
Matrix3f _R_to_earth_now; // rotation matrix from body to earth frame at current time |
|
Vector3f _vel_imu_rel_body_ned; // velocity of IMU relative to body origin in NED earth frame |
|
Vector3f _vel_deriv_ned; // velocity derivative at the IMU in NED earth frame (m/s/s) |
|
|
|
uint64_t _imu_ticks{0}; // counter for imu updates |
|
|
|
bool _imu_updated{false}; // true if the ekf should update (completed downsampling process) |
|
bool _initialised{false}; // true if the ekf interface instance (data buffering) is initialized |
|
|
|
bool _NED_origin_initialised{false}; |
|
bool _gps_speed_valid{false}; |
|
float _gps_origin_eph{0.0f}; // horizontal position uncertainty of the GPS origin |
|
float _gps_origin_epv{0.0f}; // vertical position uncertainty of the GPS origin |
|
struct map_projection_reference_s _pos_ref {}; // Contains WGS-84 position latitude and longitude (radians) of the EKF origin |
|
struct map_projection_reference_s _gps_pos_prev {}; // Contains WGS-84 position latitude and longitude (radians) of the previous GPS message |
|
float _gps_alt_prev{0.0f}; // height from the previous GPS message (m) |
|
|
|
// innovation consistency check monitoring ratios |
|
float _yaw_test_ratio{0.0f}; // yaw innovation consistency check ratio |
|
float _mag_test_ratio[3] {}; // magnetometer XYZ innovation consistency check ratios |
|
float _vel_pos_test_ratio[6] {}; // velocity and position innovation consistency check ratios |
|
float _tas_test_ratio{0.0f}; // tas innovation consistency check ratio |
|
float _terr_test_ratio{0.0f}; // height above terrain measurement innovation consistency check ratio |
|
float _beta_test_ratio{0.0f}; // sideslip innovation consistency check ratio |
|
float _drag_test_ratio[2] {}; // drag innovation cinsistency check ratio |
|
innovation_fault_status_u _innov_check_fail_status{}; |
|
|
|
bool _is_dead_reckoning{false}; // true if we are no longer fusing measurements that constrain horizontal velocity drift |
|
bool _deadreckon_time_exceeded{false}; // true if the horizontal nav solution has been deadreckoning for too long and is invalid |
|
bool _is_wind_dead_reckoning{false}; // true if we are navigating reliant on wind relative measurements |
|
|
|
// IMU vibration and movement monitoring |
|
Vector3f _delta_ang_prev; // delta angle from the previous IMU measurement |
|
Vector3f _delta_vel_prev; // delta velocity from the previous IMU measurement |
|
float _vibe_metrics[3] {}; // IMU vibration metrics |
|
// [0] Level of coning vibration in the IMU delta angles (rad^2) |
|
// [1] high frequency vibraton level in the IMU delta angle data (rad) |
|
// [2] high frequency vibration level in the IMU delta velocity data (m/s) |
|
bool _vehicle_at_rest{false}; // true when the vehicle is at rest |
|
uint64_t _time_last_move_detect_us{0}; // timestamp of last movement detection event in microseconds |
|
|
|
// data buffer instances |
|
RingBuffer<imuSample> _imu_buffer; |
|
RingBuffer<gpsSample> _gps_buffer; |
|
RingBuffer<magSample> _mag_buffer; |
|
RingBuffer<baroSample> _baro_buffer; |
|
RingBuffer<rangeSample> _range_buffer; |
|
RingBuffer<airspeedSample> _airspeed_buffer; |
|
RingBuffer<flowSample> _flow_buffer; |
|
RingBuffer<extVisionSample> _ext_vision_buffer; |
|
RingBuffer<outputSample> _output_buffer; |
|
RingBuffer<outputVert> _output_vert_buffer; |
|
RingBuffer<dragSample> _drag_buffer; |
|
RingBuffer<auxVelSample> _auxvel_buffer; |
|
|
|
// observation buffer final allocation failed |
|
bool _gps_buffer_fail{false}; |
|
bool _mag_buffer_fail{false}; |
|
bool _baro_buffer_fail{false}; |
|
bool _range_buffer_fail{false}; |
|
bool _airspeed_buffer_fail{false}; |
|
bool _flow_buffer_fail{false}; |
|
bool _ev_buffer_fail{false}; |
|
bool _drag_buffer_fail{false}; |
|
bool _auxvel_buffer_fail{false}; |
|
|
|
uint64_t _time_last_imu{0}; // timestamp of last imu sample in microseconds |
|
uint64_t _time_last_gps{0}; // timestamp of last gps measurement in microseconds |
|
uint64_t _time_last_mag{0}; // timestamp of last magnetometer measurement in microseconds |
|
uint64_t _time_last_baro{0}; // timestamp of last barometer measurement in microseconds |
|
uint64_t _time_last_range{0}; // timestamp of last range measurement in microseconds |
|
uint64_t _time_last_airspeed{0}; // timestamp of last airspeed measurement in microseconds |
|
uint64_t _time_last_ext_vision{0}; // timestamp of last external vision measurement in microseconds |
|
uint64_t _time_last_optflow{0}; |
|
uint64_t _time_last_gnd_effect_on{0}; //last time the baro ground effect compensation was turned on externally (uSec) |
|
uint64_t _time_last_auxvel{0}; |
|
|
|
fault_status_u _fault_status{}; |
|
|
|
// allocate data buffers and intialise interface variables |
|
bool initialise_interface(uint64_t timestamp); |
|
|
|
// free buffer memory |
|
void unallocate_buffers(); |
|
|
|
float _mag_declination_gps{0.0f}; // magnetic declination returned by the geo library using the last valid GPS position (rad) |
|
float _mag_declination_to_save_deg{0.0f}; // magnetic declination to save to EKF2_MAG_DECL (deg) |
|
|
|
// this is the current status of the filter control modes |
|
filter_control_status_u _control_status{}; |
|
|
|
// this is the previous status of the filter control modes - used to detect mode transitions |
|
filter_control_status_u _control_status_prev{}; |
|
|
|
// perform a vector cross product |
|
Vector3f cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2); |
|
|
|
// calculate the inverse rotation matrix from a quaternion rotation |
|
Matrix3f quat_to_invrotmat(const Quatf &quat); |
|
|
|
};
|
|
|