You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
217 lines
6.9 KiB
217 lines
6.9 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file vel_pos_fusion.cpp |
|
* Function for fusing gps and baro measurements/ |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Siddharth Bharat Purohit <siddharthbharatpurohit@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#include <ecl.h> |
|
#include <mathlib/mathlib.h> |
|
|
|
|
|
bool Ekf::fuseHorizontalVelocity(const Vector3f &innov, const Vector2f &innov_gate, |
|
const Vector3f &obs_var, Vector3f &innov_var, Vector2f &test_ratio) |
|
{ |
|
innov_var(0) = P(4,4) + obs_var(0); |
|
innov_var(1) = P(5,5) + obs_var(1); |
|
test_ratio(0) = fmaxf(sq(innov(0)) / (sq(innov_gate(0)) * innov_var(0)), |
|
sq(innov(1)) / (sq(innov_gate(0)) * innov_var(1))); |
|
|
|
const bool innov_check_pass = (test_ratio(0) <= 1.0f); |
|
if (innov_check_pass) |
|
{ |
|
_time_last_hor_vel_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_hor_vel = false; |
|
|
|
fuseVelPosHeight(innov(0),innov_var(0),0); |
|
fuseVelPosHeight(innov(1),innov_var(1),1); |
|
|
|
return true; |
|
}else{ |
|
_innov_check_fail_status.flags.reject_hor_vel = true; |
|
return false; |
|
} |
|
} |
|
|
|
bool Ekf::fuseVerticalVelocity(const Vector3f &innov, const Vector2f &innov_gate, |
|
const Vector3f &obs_var, Vector3f &innov_var, Vector2f &test_ratio) |
|
{ |
|
innov_var(2) = P(6,6) + obs_var(2); |
|
test_ratio(1) = sq(innov(2)) / (sq(innov_gate(1)) * innov_var(2)); |
|
|
|
const bool innov_check_pass = (test_ratio(1) <= 1.0f); |
|
if (innov_check_pass) { |
|
_time_last_ver_vel_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_ver_vel = false; |
|
|
|
fuseVelPosHeight(innov(2),innov_var(2),2); |
|
|
|
return true; |
|
}else{ |
|
_innov_check_fail_status.flags.reject_ver_vel = true; |
|
return false; |
|
} |
|
} |
|
|
|
bool Ekf::fuseHorizontalPosition(const Vector3f &innov, const Vector2f &innov_gate, |
|
const Vector3f &obs_var, Vector3f &innov_var, Vector2f &test_ratio) |
|
{ |
|
innov_var(0) = P(7,7) + obs_var(0); |
|
innov_var(1) = P(8,8) + obs_var(1); |
|
test_ratio(0) = fmaxf(sq(innov(0)) / (sq(innov_gate(0)) * innov_var(0)), |
|
sq(innov(1)) / (sq(innov_gate(0)) * innov_var(1))); |
|
|
|
const bool innov_check_pass = (test_ratio(0) <= 1.0f) || !_control_status.flags.tilt_align; |
|
if (innov_check_pass) { |
|
if (!_fuse_hpos_as_odom) { |
|
_time_last_hor_pos_fuse = _time_last_imu; |
|
|
|
} else { |
|
_time_last_delpos_fuse = _time_last_imu; |
|
} |
|
_innov_check_fail_status.flags.reject_hor_pos = false; |
|
|
|
fuseVelPosHeight(innov(0),innov_var(0),3); |
|
fuseVelPosHeight(innov(1),innov_var(1),4); |
|
|
|
return true; |
|
}else{ |
|
_innov_check_fail_status.flags.reject_hor_pos = true; |
|
return false; |
|
} |
|
} |
|
|
|
bool Ekf::fuseVerticalPosition(const Vector3f &innov, const Vector2f &innov_gate, |
|
const Vector3f &obs_var, Vector3f &innov_var, Vector2f &test_ratio) |
|
{ |
|
innov_var(2) = P(9,9) + obs_var(2); |
|
test_ratio(1) = sq(innov(2)) / (sq(innov_gate(1)) * innov_var(2)); |
|
|
|
const bool innov_check_pass = (test_ratio(1) <= 1.0f) || !_control_status.flags.tilt_align; |
|
if (innov_check_pass) { |
|
_time_last_hgt_fuse = _time_last_imu; |
|
_innov_check_fail_status.flags.reject_ver_pos = false; |
|
|
|
fuseVelPosHeight(innov(2),innov_var(2),5); |
|
|
|
return true; |
|
}else{ |
|
_innov_check_fail_status.flags.reject_ver_pos = true; |
|
return false; |
|
} |
|
} |
|
|
|
// Helper function that fuses a single velocity or position measurement |
|
void Ekf::fuseVelPosHeight(const float innov, const float innov_var, const int obs_index) |
|
{ |
|
float Kfusion[24] = {}; // Kalman gain vector for any single observation - sequential fusion is used. |
|
const unsigned state_index = obs_index + 4; // we start with vx and this is the 4. state |
|
|
|
// calculate kalman gain K = PHS, where S = 1/innovation variance |
|
for (int row = 0; row < _k_num_states; row++) { |
|
Kfusion[row] = P(row,state_index) / innov_var; |
|
} |
|
|
|
matrix::SquareMatrix<float, _k_num_states> KHP; |
|
|
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
KHP(row,column) = Kfusion[row] * P(state_index,column); |
|
} |
|
} |
|
|
|
// if the covariance correction will result in a negative variance, then |
|
// the covariance matrix is unhealthy and must be corrected |
|
bool healthy = true; |
|
|
|
for (int i = 0; i < _k_num_states; i++) { |
|
if (P(i,i) < KHP(i,i)) { |
|
// zero rows and columns |
|
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f); |
|
|
|
healthy = false; |
|
|
|
setVelPosFaultStatus(obs_index, true); |
|
|
|
} else { |
|
setVelPosFaultStatus(obs_index, false); |
|
} |
|
} |
|
|
|
|
|
// only apply covariance and state corrections if healthy |
|
if (healthy) { |
|
// apply the covariance corrections |
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < _k_num_states; column++) { |
|
P(row,column) = P(row,column) - KHP(row,column); |
|
} |
|
} |
|
|
|
// correct the covariance matrix for gross errors |
|
fixCovarianceErrors(true); |
|
|
|
// apply the state corrections |
|
fuse(Kfusion, innov); |
|
|
|
} |
|
} |
|
|
|
void Ekf::setVelPosFaultStatus(const int index, const bool status) |
|
{ |
|
if (index == 0) { |
|
_fault_status.flags.bad_vel_N = status; |
|
|
|
} else if (index == 1) { |
|
_fault_status.flags.bad_vel_E = status; |
|
|
|
} else if (index == 2) { |
|
_fault_status.flags.bad_vel_D = status; |
|
|
|
} else if (index == 3) { |
|
_fault_status.flags.bad_pos_N = status; |
|
|
|
} else if (index == 4) { |
|
_fault_status.flags.bad_pos_E = status; |
|
|
|
} else if (index == 5) { |
|
_fault_status.flags.bad_pos_D = status; |
|
} |
|
}
|
|
|