You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1250 lines
41 KiB
1250 lines
41 KiB
/************************************************************************************ |
|
* drivers/mtd/m25px.c |
|
* Driver for SPI-based SST25 FLASH. |
|
* |
|
* Copyright (C) 2012 Gregory Nutt. All rights reserved. |
|
* Author: Gregory Nutt <gnutt@nuttx.org> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name NuttX nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
************************************************************************************/ |
|
|
|
/************************************************************************************ |
|
* Included Files |
|
************************************************************************************/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <sys/types.h> |
|
|
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <stdlib.h> |
|
#include <unistd.h> |
|
#include <string.h> |
|
#include <assert.h> |
|
#include <errno.h> |
|
#include <debug.h> |
|
|
|
#include <nuttx/kmalloc.h> |
|
#include <nuttx/fs/ioctl.h> |
|
#include <nuttx/spi.h> |
|
#include <nuttx/mtd.h> |
|
|
|
/************************************************************************************ |
|
* Pre-processor Definitions |
|
************************************************************************************/ |
|
/* Configuration ********************************************************************/ |
|
/* Per the data sheet, the SST25 parts can be driven with either SPI mode 0 (CPOL=0 |
|
* and CPHA=0) or mode 3 (CPOL=1 and CPHA=1). But I have heard that other devices |
|
* can operate in mode 0 or 1. So you may need to specify CONFIG_SST25_SPIMODE to |
|
* select the best mode for your device. If CONFIG_SST25_SPIMODE is not defined, |
|
* mode 0 will be used. |
|
*/ |
|
|
|
#ifndef CONFIG_SST25_SPIMODE |
|
# define CONFIG_SST25_SPIMODE SPIDEV_MODE0 |
|
#endif |
|
|
|
/* SPI Frequency. May be up to 25MHz. */ |
|
|
|
#ifndef CONFIG_SST25_SPIFREQUENCY |
|
# define CONFIG_SST25_SPIFREQUENCY 20000000 |
|
#endif |
|
|
|
/* There is a bug in the current code when using the higher speed AAI write sequence. |
|
* The nature of the bug is that the WRDI instruction is not working. At the end |
|
* of the AAI sequence, the status register continues to report that the SST25 is |
|
* write enabled (WEL bit) and in AAI mode (AAI bit). This *must* be fixed in any |
|
* production code if you want to have proper write performance. |
|
*/ |
|
|
|
#warning "REVISIT" |
|
#undef CONFIG_SST25_SLOWWRITE |
|
#define CONFIG_SST25_SLOWWRITE 1 |
|
|
|
/* SST25 Instructions ***************************************************************/ |
|
/* Command Value Description Addr Data */ |
|
/* Dummy */ |
|
#define SST25_READ 0x03 /* Read data bytes 3 0 >=1 */ |
|
#define SST25_FAST_READ 0x0b /* Higher speed read 3 1 >=1 */ |
|
#define SST25_SE 0x20 /* 4Kb Sector erase 3 0 0 */ |
|
#define SST25_BE32 0x52 /* 32Kbit block Erase 3 0 0 */ |
|
#define SST25_BE64 0xd8 /* 64Kbit block Erase 3 0 0 */ |
|
#define SST25_CE 0xc7 /* Chip erase 0 0 0 */ |
|
#define SST25_CE_ALT 0x60 /* Chip erase (alternate) 0 0 0 */ |
|
#define SST25_BP 0x02 /* Byte program 3 0 1 */ |
|
#define SST25_AAI 0xad /* Auto address increment 3 0 >=2 */ |
|
#define SST25_RDSR 0x05 /* Read status register 0 0 >=1 */ |
|
#define SST25_EWSR 0x50 /* Write enable status 0 0 0 */ |
|
#define SST25_WRSR 0x01 /* Write Status Register 0 0 1 */ |
|
#define SST25_WREN 0x06 /* Write Enable 0 0 0 */ |
|
#define SST25_WRDI 0x04 /* Write Disable 0 0 0 */ |
|
#define SST25_RDID 0xab /* Read Identification 0 0 >=1 */ |
|
#define SST25_RDID_ALT 0x90 /* Read Identification (alt) 0 0 >=1 */ |
|
#define SST25_JEDEC_ID 0x9f /* JEDEC ID read 0 0 >=3 */ |
|
#define SST25_EBSY 0x70 /* Enable SO RY/BY# status 0 0 0 */ |
|
#define SST25_DBSY 0x80 /* Disable SO RY/BY# status 0 0 0 */ |
|
|
|
/* SST25 Registers ******************************************************************/ |
|
/* Read ID (RDID) register values */ |
|
|
|
#define SST25_MANUFACTURER 0xbf /* SST manufacturer ID */ |
|
#define SST25_VF032_DEVID 0x20 /* SSTVF032B device ID */ |
|
|
|
/* JEDEC Read ID register values */ |
|
|
|
#define SST25_JEDEC_MANUFACTURER 0xbf /* SST manufacturer ID */ |
|
#define SST25_JEDEC_MEMORY_TYPE 0x25 /* SST25 memory type */ |
|
#define SST25_JEDEC_MEMORY_CAPACITY 0x4a /* SST25VF032B memory capacity */ |
|
|
|
/* Status register bit definitions */ |
|
|
|
#define SST25_SR_BUSY (1 << 0) /* Bit 0: Write in progress */ |
|
#define SST25_SR_WEL (1 << 1) /* Bit 1: Write enable latch bit */ |
|
#define SST25_SR_BP_SHIFT (2) /* Bits 2-5: Block protect bits */ |
|
#define SST25_SR_BP_MASK (15 << SST25_SR_BP_SHIFT) |
|
# define SST25_SR_BP_NONE (0 << SST25_SR_BP_SHIFT) /* Unprotected */ |
|
# define SST25_SR_BP_UPPER64th (1 << SST25_SR_BP_SHIFT) /* Upper 64th */ |
|
# define SST25_SR_BP_UPPER32nd (2 << SST25_SR_BP_SHIFT) /* Upper 32nd */ |
|
# define SST25_SR_BP_UPPER16th (3 << SST25_SR_BP_SHIFT) /* Upper 16th */ |
|
# define SST25_SR_BP_UPPER8th (4 << SST25_SR_BP_SHIFT) /* Upper 8th */ |
|
# define SST25_SR_BP_UPPERQTR (5 << SST25_SR_BP_SHIFT) /* Upper quarter */ |
|
# define SST25_SR_BP_UPPERHALF (6 << SST25_SR_BP_SHIFT) /* Upper half */ |
|
# define SST25_SR_BP_ALL (7 << SST25_SR_BP_SHIFT) /* All sectors */ |
|
#define SST25_SR_AAI (1 << 6) /* Bit 6: Auto Address increment programming */ |
|
#define SST25_SR_SRWD (1 << 7) /* Bit 7: Status register write protect */ |
|
|
|
#define SST25_DUMMY 0xa5 |
|
|
|
/* Chip Geometries ******************************************************************/ |
|
/* SST25VF512 capacity is 512Kbit (64Kbit x 8) = 64Kb (8Kb x 8)*/ |
|
/* SST25VF010 capacity is 1Mbit (128Kbit x 8) = 128Kb (16Kb x 8*/ |
|
/* SST25VF520 capacity is 2Mbit (256Kbit x 8) = 256Kb (32Kb x 8) */ |
|
/* SST25VF540 capacity is 4Mbit (512Kbit x 8) = 512Kb (64Kb x 8) */ |
|
/* SST25VF080 capacity is 8Mbit (1024Kbit x 8) = 1Mb (128Kb x 8) */ |
|
/* SST25VF016 capacity is 16Mbit (2048Kbit x 8) = 2Mb (256Kb x 8) */ |
|
/* Not yet supported */ |
|
|
|
/* SST25VF032 capacity is 32Mbit (4096Kbit x 8) = 4Mb (512kb x 8) */ |
|
|
|
#define SST25_VF032_SECTOR_SHIFT 12 /* Sector size 1 << 12 = 4Kb */ |
|
#define SST25_VF032_NSECTORS 1024 /* 1024 sectors x 4096 bytes/sector = 4Mb */ |
|
|
|
#ifdef CONFIG_SST25_SECTOR512 /* Simulate a 512 byte sector */ |
|
# define SST25_SECTOR_SHIFT 9 /* Sector size 1 << 9 = 512 bytes */ |
|
# define SST25_SECTOR_SIZE 512 /* Sector size = 512 bytes */ |
|
#endif |
|
|
|
#define SST25_ERASED_STATE 0xff /* State of FLASH when erased */ |
|
|
|
/* Cache flags */ |
|
|
|
#define SST25_CACHE_VALID (1 << 0) /* 1=Cache has valid data */ |
|
#define SST25_CACHE_DIRTY (1 << 1) /* 1=Cache is dirty */ |
|
#define SST25_CACHE_ERASED (1 << 2) /* 1=Backing FLASH is erased */ |
|
|
|
#define IS_VALID(p) ((((p)->flags) & SST25_CACHE_VALID) != 0) |
|
#define IS_DIRTY(p) ((((p)->flags) & SST25_CACHE_DIRTY) != 0) |
|
#define IS_ERASED(p) ((((p)->flags) & SST25_CACHE_DIRTY) != 0) |
|
|
|
#define SET_VALID(p) do { (p)->flags |= SST25_CACHE_VALID; } while (0) |
|
#define SET_DIRTY(p) do { (p)->flags |= SST25_CACHE_DIRTY; } while (0) |
|
#define SET_ERASED(p) do { (p)->flags |= SST25_CACHE_DIRTY; } while (0) |
|
|
|
#define CLR_VALID(p) do { (p)->flags &= ~SST25_CACHE_VALID; } while (0) |
|
#define CLR_DIRTY(p) do { (p)->flags &= ~SST25_CACHE_DIRTY; } while (0) |
|
#define CLR_ERASED(p) do { (p)->flags &= ~SST25_CACHE_DIRTY; } while (0) |
|
|
|
/************************************************************************************ |
|
* Private Types |
|
************************************************************************************/ |
|
|
|
/* This type represents the state of the MTD device. The struct mtd_dev_s must |
|
* appear at the beginning of the definition so that you can freely cast between |
|
* pointers to struct mtd_dev_s and struct sst25_dev_s. |
|
*/ |
|
|
|
struct sst25_dev_s |
|
{ |
|
struct mtd_dev_s mtd; /* MTD interface */ |
|
FAR struct spi_dev_s *dev; /* Saved SPI interface instance */ |
|
uint16_t nsectors; /* Number of erase sectors */ |
|
uint8_t sectorshift; /* Log2 of erase sector size */ |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) && !defined(CONFIG_SST25_READONLY) |
|
uint8_t flags; /* Buffered sector flags */ |
|
uint16_t esectno; /* Erase sector number in the cache*/ |
|
FAR uint8_t *sector; /* Allocated sector data */ |
|
#endif |
|
}; |
|
|
|
/************************************************************************************ |
|
* Private Function Prototypes |
|
************************************************************************************/ |
|
|
|
/* Helpers */ |
|
|
|
static void sst25_lock(FAR struct spi_dev_s *dev); |
|
static inline void sst25_unlock(FAR struct spi_dev_s *dev); |
|
static inline int sst25_readid(FAR struct sst25_dev_s *priv); |
|
#ifndef CONFIG_SST25_READONLY |
|
static void sst25_unprotect(FAR struct spi_dev_s *dev); |
|
#endif |
|
static uint8_t sst25_waitwritecomplete(FAR struct sst25_dev_s *priv); |
|
static inline void sst25_wren(FAR struct sst25_dev_s *priv); |
|
static inline void sst25_wrdi(FAR struct sst25_dev_s *priv); |
|
static void sst25_sectorerase(FAR struct sst25_dev_s *priv, off_t offset); |
|
static inline int sst25_chiperase(FAR struct sst25_dev_s *priv); |
|
static void sst25_byteread(FAR struct sst25_dev_s *priv, FAR uint8_t *buffer, |
|
off_t address, size_t nbytes); |
|
#ifndef CONFIG_SST25_READONLY |
|
#ifdef CONFIG_SST25_SLOWWRITE |
|
static void sst25_bytewrite(FAR struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t address, size_t nbytes); |
|
#else |
|
static void sst25_wordwrite(FAR struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t address, size_t nbytes); |
|
#endif |
|
#ifdef CONFIG_SST25_SECTOR512 |
|
static void sst25_cacheflush(struct sst25_dev_s *priv); |
|
static FAR uint8_t *sst25_cacheread(struct sst25_dev_s *priv, off_t sector); |
|
static void sst25_cacheerase(struct sst25_dev_s *priv, off_t sector); |
|
static void sst25_cachewrite(FAR struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t sector, size_t nsectors); |
|
#endif |
|
#endif |
|
|
|
/* MTD driver methods */ |
|
|
|
static int sst25_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks); |
|
static ssize_t sst25_bread(FAR struct mtd_dev_s *dev, off_t startblock, |
|
size_t nblocks, FAR uint8_t *buf); |
|
static ssize_t sst25_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, |
|
size_t nblocks, FAR const uint8_t *buf); |
|
static ssize_t sst25_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
|
FAR uint8_t *buffer); |
|
static int sst25_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg); |
|
|
|
/************************************************************************************ |
|
* Private Data |
|
************************************************************************************/ |
|
|
|
/************************************************************************************ |
|
* Private Functions |
|
************************************************************************************/ |
|
|
|
/************************************************************************************ |
|
* Name: sst25_lock |
|
************************************************************************************/ |
|
|
|
static void sst25_lock(FAR struct spi_dev_s *dev) |
|
{ |
|
/* On SPI busses where there are multiple devices, it will be necessary to |
|
* lock SPI to have exclusive access to the busses for a sequence of |
|
* transfers. The bus should be locked before the chip is selected. |
|
* |
|
* This is a blocking call and will not return until we have exclusiv access to |
|
* the SPI buss. We will retain that exclusive access until the bus is unlocked. |
|
*/ |
|
|
|
(void)SPI_LOCK(dev, true); |
|
|
|
/* After locking the SPI bus, the we also need call the setfrequency, setbits, and |
|
* setmode methods to make sure that the SPI is properly configured for the device. |
|
* If the SPI buss is being shared, then it may have been left in an incompatible |
|
* state. |
|
*/ |
|
|
|
SPI_SETMODE(dev, CONFIG_SST25_SPIMODE); |
|
SPI_SETBITS(dev, 8); |
|
(void)SPI_SETFREQUENCY(dev, CONFIG_SST25_SPIFREQUENCY); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_unlock |
|
************************************************************************************/ |
|
|
|
static inline void sst25_unlock(FAR struct spi_dev_s *dev) |
|
{ |
|
(void)SPI_LOCK(dev, false); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_readid |
|
************************************************************************************/ |
|
|
|
static inline int sst25_readid(struct sst25_dev_s *priv) |
|
{ |
|
uint16_t manufacturer; |
|
uint16_t memory; |
|
uint16_t capacity; |
|
|
|
fvdbg("priv: %p\n", priv); |
|
|
|
/* Lock the SPI bus, configure the bus, and select this FLASH part. */ |
|
|
|
sst25_lock(priv->dev); |
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send the "Read ID (RDID)" command and read the first three ID bytes */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_JEDEC_ID); |
|
manufacturer = SPI_SEND(priv->dev, SST25_DUMMY); |
|
memory = SPI_SEND(priv->dev, SST25_DUMMY); |
|
capacity = SPI_SEND(priv->dev, SST25_DUMMY); |
|
|
|
/* Deselect the FLASH and unlock the bus */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
sst25_unlock(priv->dev); |
|
|
|
fvdbg("manufacturer: %02x memory: %02x capacity: %02x\n", |
|
manufacturer, memory, capacity); |
|
|
|
/* Check for a valid manufacturer and memory type */ |
|
|
|
if (manufacturer == SST25_JEDEC_MANUFACTURER && memory == SST25_JEDEC_MEMORY_TYPE) |
|
{ |
|
/* Okay.. is it a FLASH capacity that we understand? This should be extended |
|
* support other members of the SST25 family. |
|
*/ |
|
|
|
if (capacity == SST25_JEDEC_MEMORY_CAPACITY) |
|
{ |
|
/* Save the FLASH geometry */ |
|
|
|
priv->sectorshift = SST25_VF032_SECTOR_SHIFT; |
|
priv->nsectors = SST25_VF032_NSECTORS; |
|
return OK; |
|
} |
|
} |
|
|
|
return -ENODEV; |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_unprotect |
|
************************************************************************************/ |
|
|
|
#ifndef CONFIG_SST25_READONLY |
|
static void sst25_unprotect(FAR struct spi_dev_s *dev) |
|
{ |
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Write enable status (EWSR)" */ |
|
|
|
SPI_SEND(dev, SST25_EWSR); |
|
|
|
/* Re-select this FLASH part (This might not be necessary... but is it shown in |
|
* the timing diagrams) |
|
*/ |
|
|
|
SPI_SELECT(dev, SPIDEV_FLASH, false); |
|
SPI_SELECT(dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Write enable status (EWSR)" */ |
|
|
|
SPI_SEND(dev, SST25_WRSR); |
|
|
|
/* Following by the new status value */ |
|
|
|
SPI_SEND(dev, 0); |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_waitwritecomplete |
|
************************************************************************************/ |
|
|
|
static uint8_t sst25_waitwritecomplete(struct sst25_dev_s *priv) |
|
{ |
|
uint8_t status; |
|
|
|
/* Are we the only device on the bus? */ |
|
|
|
#ifdef CONFIG_SPI_OWNBUS |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Read Status Register (RDSR)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_RDSR); |
|
|
|
/* Loop as long as the memory is busy with a write cycle */ |
|
|
|
do |
|
{ |
|
/* Send a dummy byte to generate the clock needed to shift out the status */ |
|
|
|
status = SPI_SEND(priv->dev, SST25_DUMMY); |
|
} |
|
while ((status & SST25_SR_BUSY) != 0); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
|
|
#else |
|
|
|
/* Loop as long as the memory is busy with a write cycle */ |
|
|
|
do |
|
{ |
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Read Status Register (RDSR)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_RDSR); |
|
|
|
/* Send a dummy byte to generate the clock needed to shift out the status */ |
|
|
|
status = SPI_SEND(priv->dev, SST25_DUMMY); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
|
|
/* Given that writing could take up to few tens of milliseconds, and erasing |
|
* could take more. The following short delay in the "busy" case will allow |
|
* other peripherals to access the SPI bus. |
|
*/ |
|
|
|
#if 0 /* Makes writes too slow */ |
|
if ((status & SST25_SR_BUSY) != 0) |
|
{ |
|
sst25_unlock(priv->dev); |
|
usleep(1000); |
|
sst25_lock(priv->dev); |
|
} |
|
#endif |
|
} |
|
while ((status & SST25_SR_BUSY) != 0); |
|
#endif |
|
|
|
return status; |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_wren |
|
************************************************************************************/ |
|
|
|
static inline void sst25_wren(struct sst25_dev_s *priv) |
|
{ |
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Write Enable (WREN)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_WREN); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_wrdi |
|
************************************************************************************/ |
|
|
|
static inline void sst25_wrdi(struct sst25_dev_s *priv) |
|
{ |
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Write Disable (WRDI)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_WRDI); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_sectorerase |
|
************************************************************************************/ |
|
|
|
static void sst25_sectorerase(struct sst25_dev_s *priv, off_t sector) |
|
{ |
|
off_t address = sector << priv->sectorshift; |
|
|
|
fvdbg("sector: %08lx\n", (long)sector); |
|
|
|
/* Wait for any preceding write or erase operation to complete. */ |
|
|
|
(void)sst25_waitwritecomplete(priv); |
|
|
|
/* Send write enable instruction */ |
|
|
|
sst25_wren(priv); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send the "Sector Erase (SE)" instruction */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_SE); |
|
|
|
/* Send the sector address high byte first. Only the most significant bits (those |
|
* corresponding to the sector) have any meaning. |
|
*/ |
|
|
|
(void)SPI_SEND(priv->dev, (address >> 16) & 0xff); |
|
(void)SPI_SEND(priv->dev, (address >> 8) & 0xff); |
|
(void)SPI_SEND(priv->dev, address & 0xff); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_chiperase |
|
************************************************************************************/ |
|
|
|
static inline int sst25_chiperase(struct sst25_dev_s *priv) |
|
{ |
|
fvdbg("priv: %p\n", priv); |
|
|
|
/* Wait for any preceding write or erase operation to complete. */ |
|
|
|
(void)sst25_waitwritecomplete(priv); |
|
|
|
/* Send write enable instruction */ |
|
|
|
sst25_wren(priv); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send the "Chip Erase (CE)" instruction */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_CE); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
fvdbg("Return: OK\n"); |
|
return OK; |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_byteread |
|
************************************************************************************/ |
|
|
|
static void sst25_byteread(FAR struct sst25_dev_s *priv, FAR uint8_t *buffer, |
|
off_t address, size_t nbytes) |
|
{ |
|
uint8_t status; |
|
|
|
fvdbg("address: %08lx nbytes: %d\n", (long)address, (int)nbytes); |
|
|
|
/* Wait for any preceding write or erase operation to complete. */ |
|
|
|
status = sst25_waitwritecomplete(priv); |
|
DEBUGASSERT((status & (SST25_SR_WEL|SST25_SR_BP_MASK|SST25_SR_AAI)) == 0); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Read from Memory " instruction */ |
|
|
|
#ifdef CONFIG_SST25_SLOWREAD |
|
(void)SPI_SEND(priv->dev, SST25_READ); |
|
#else |
|
(void)SPI_SEND(priv->dev, SST25_FAST_READ); |
|
#endif |
|
|
|
/* Send the address high byte first. */ |
|
|
|
(void)SPI_SEND(priv->dev, (address >> 16) & 0xff); |
|
(void)SPI_SEND(priv->dev, (address >> 8) & 0xff); |
|
(void)SPI_SEND(priv->dev, address & 0xff); |
|
|
|
/* Send a dummy byte */ |
|
|
|
#ifndef CONFIG_SST25_SLOWREAD |
|
(void)SPI_SEND(priv->dev, SST25_DUMMY); |
|
#endif |
|
|
|
/* Then read all of the requested bytes */ |
|
|
|
SPI_RECVBLOCK(priv->dev, buffer, nbytes); |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_bytewrite |
|
************************************************************************************/ |
|
|
|
#if defined(CONFIG_SST25_SLOWWRITE) && !defined(CONFIG_SST25_READONLY) |
|
static void sst25_bytewrite(struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t address, size_t nbytes) |
|
{ |
|
uint8_t status; |
|
|
|
fvdbg("address: %08lx nwords: %d\n", (long)address, (int)nbytes); |
|
DEBUGASSERT(priv && buffer); |
|
|
|
/* Write each byte individually */ |
|
|
|
for (; nbytes > 0; nbytes--) |
|
{ |
|
/* Skip over bytes that are begin written to the erased state */ |
|
|
|
if (*buffer != SST25_ERASED_STATE) |
|
{ |
|
/* Wait for any preceding write or erase operation to complete. */ |
|
|
|
status = sst25_waitwritecomplete(priv); |
|
DEBUGASSERT((status & (SST25_SR_WEL|SST25_SR_BP_MASK|SST25_SR_AAI)) == 0); |
|
|
|
/* Enable write access to the FLASH */ |
|
|
|
sst25_wren(priv); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Byte Program (BP)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_BP); |
|
|
|
/* Send the byte address high byte first. */ |
|
|
|
(void)SPI_SEND(priv->dev, (address >> 16) & 0xff); |
|
(void)SPI_SEND(priv->dev, (address >> 8) & 0xff); |
|
(void)SPI_SEND(priv->dev, address & 0xff); |
|
|
|
/* Then write the single byte */ |
|
|
|
(void)SPI_SEND(priv->dev, *buffer); |
|
|
|
/* Deselect the FLASH and setup for the next pass through the loop */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
} |
|
|
|
/* Advance to the next byte */ |
|
|
|
buffer++; |
|
address++; |
|
} |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_wordwrite |
|
************************************************************************************/ |
|
|
|
#if !defined(CONFIG_SST25_SLOWWRITE) && !defined(CONFIG_SST25_READONLY) |
|
static void sst25_wordwrite(struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t address, size_t nbytes) |
|
{ |
|
size_t nwords = (nbytes + 1) >> 1; |
|
uint8_t status; |
|
|
|
fvdbg("address: %08lx nwords: %d\n", (long)address, (int)nwords); |
|
DEBUGASSERT(priv && buffer); |
|
|
|
/* Loop until all of the bytes have been written */ |
|
|
|
while (nwords > 0) |
|
{ |
|
/* Skip over any data that is being written to the erased state */ |
|
|
|
while (nwords > 0 && |
|
buffer[0] == SST25_ERASED_STATE && |
|
buffer[1] == SST25_ERASED_STATE) |
|
{ |
|
/* Decrement the word count and advance the write position */ |
|
|
|
nwords--; |
|
buffer += 2; |
|
address += 2; |
|
} |
|
|
|
/* If there are no further non-erased bytes in the user buffer, then |
|
* we are finished. |
|
*/ |
|
|
|
if (nwords <= 0) |
|
{ |
|
return; |
|
} |
|
|
|
/* Wait for any preceding write or erase operation to complete. */ |
|
|
|
status = sst25_waitwritecomplete(priv); |
|
DEBUGASSERT((status & (SST25_SR_WEL|SST25_SR_BP_MASK|SST25_SR_AAI)) == 0); |
|
|
|
/* Enable write access to the FLASH */ |
|
|
|
sst25_wren(priv); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Auto Address Increment (AAI)" command */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_AAI); |
|
|
|
/* Send the word address high byte first. */ |
|
|
|
(void)SPI_SEND(priv->dev, (address >> 16) & 0xff); |
|
(void)SPI_SEND(priv->dev, (address >> 8) & 0xff); |
|
(void)SPI_SEND(priv->dev, address & 0xff); |
|
|
|
/* Then write one 16-bit word */ |
|
|
|
SPI_SNDBLOCK(priv->dev, buffer, 2); |
|
|
|
/* Deselect the FLASH: Chip Select high */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
|
|
/* Decrement the word count and advance the write position */ |
|
|
|
nwords--; |
|
buffer += 2; |
|
address += 2; |
|
|
|
/* Now loop, writing 16-bits of data on each pass through the loop |
|
* until all of the words have been transferred or until we encounter |
|
* data to be written to the erased state. |
|
*/ |
|
|
|
while (nwords > 0 && |
|
(buffer[0] != SST25_ERASED_STATE || |
|
buffer[1] != SST25_ERASED_STATE)) |
|
{ |
|
/* Wait for the preceding write to complete. */ |
|
|
|
status = sst25_waitwritecomplete(priv); |
|
DEBUGASSERT((status & (SST25_SR_WEL|SST25_SR_BP_MASK|SST25_SR_AAI)) == (SST25_SR_WEL|SST25_SR_AAI)); |
|
|
|
/* Select this FLASH part */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, true); |
|
|
|
/* Send "Auto Address Increment (AAI)" command with no address */ |
|
|
|
(void)SPI_SEND(priv->dev, SST25_AAI); |
|
|
|
/* Then write one 16-bit word */ |
|
|
|
SPI_SNDBLOCK(priv->dev, buffer, 2); |
|
|
|
/* Deselect the FLASH: Chip Select high */ |
|
|
|
SPI_SELECT(priv->dev, SPIDEV_FLASH, false); |
|
|
|
/* Decrement the word count and advance the write position */ |
|
|
|
nwords--; |
|
buffer += 2; |
|
address += 2; |
|
} |
|
|
|
/* Disable writing */ |
|
|
|
sst25_wrdi(priv); |
|
} |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_cacheflush |
|
************************************************************************************/ |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) && !defined(CONFIG_SST25_READONLY) |
|
static void sst25_cacheflush(struct sst25_dev_s *priv) |
|
{ |
|
/* If the cached is dirty (meaning that it no longer matches the old FLASH contents) |
|
* or was erased (with the cache containing the correct FLASH contents), then write |
|
* the cached erase block to FLASH. |
|
*/ |
|
|
|
if (IS_DIRTY(priv) || IS_ERASED(priv)) |
|
{ |
|
/* Write entire erase block to FLASH */ |
|
|
|
#ifdef CONFIG_SST25_SLOWWRITE |
|
sst25_bytewrite(priv, priv->sector, (off_t)priv->esectno << priv->sectorshift, |
|
(1 << priv->sectorshift)); |
|
#else |
|
sst25_wordwrite(priv, priv->sector, (off_t)priv->esectno << priv->sectorshift, |
|
(1 << priv->sectorshift)); |
|
#endif |
|
|
|
/* The case is no long dirty and the FLASH is no longer erased */ |
|
|
|
CLR_DIRTY(priv); |
|
CLR_ERASED(priv); |
|
} |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_cacheread |
|
************************************************************************************/ |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) && !defined(CONFIG_SST25_READONLY) |
|
static FAR uint8_t *sst25_cacheread(struct sst25_dev_s *priv, off_t sector) |
|
{ |
|
off_t esectno; |
|
int shift; |
|
int index; |
|
|
|
/* Convert from the 512 byte sector to the erase sector size of the device. For |
|
* exmample, if the actual erase sector size if 4Kb (1 << 12), then we first |
|
* shift to the right by 3 to get the sector number in 4096 increments. |
|
*/ |
|
|
|
shift = priv->sectorshift - SST25_SECTOR_SHIFT; |
|
esectno = sector >> shift; |
|
fvdbg("sector: %ld esectno: %d shift=%d\n", sector, esectno, shift); |
|
|
|
/* Check if the requested erase block is already in the cache */ |
|
|
|
if (!IS_VALID(priv) || esectno != priv->esectno) |
|
{ |
|
/* No.. Flush any dirty erase block currently in the cache */ |
|
|
|
sst25_cacheflush(priv); |
|
|
|
/* Read the erase block into the cache */ |
|
|
|
sst25_byteread(priv, priv->sector, (esectno << priv->sectorshift), 1 << priv->sectorshift); |
|
|
|
/* Mark the sector as cached */ |
|
|
|
priv->esectno = esectno; |
|
|
|
SET_VALID(priv); /* The data in the cache is valid */ |
|
CLR_DIRTY(priv); /* It should match the FLASH contents */ |
|
CLR_ERASED(priv); /* The underlying FLASH has not been erased */ |
|
} |
|
|
|
/* Get the index to the 512 sector in the erase block that holds the argument */ |
|
|
|
index = sector & ((1 << shift) - 1); |
|
|
|
/* Return the address in the cache that holds this sector */ |
|
|
|
return &priv->sector[index << SST25_SECTOR_SHIFT]; |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_cacheerase |
|
************************************************************************************/ |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) && !defined(CONFIG_SST25_READONLY) |
|
static void sst25_cacheerase(struct sst25_dev_s *priv, off_t sector) |
|
{ |
|
FAR uint8_t *dest; |
|
|
|
/* First, make sure that the erase block containing the 512 byte sector is in |
|
* the cache. |
|
*/ |
|
|
|
dest = sst25_cacheread(priv, sector); |
|
|
|
/* Erase the block containing this sector if it is not already erased. |
|
* The erased indicated will be cleared when the data from the erase sector |
|
* is read into the cache and set here when we erase the block. |
|
*/ |
|
|
|
if (!IS_ERASED(priv)) |
|
{ |
|
off_t esectno = sector >> (priv->sectorshift - SST25_SECTOR_SHIFT); |
|
fvdbg("sector: %ld esectno: %d\n", sector, esectno); |
|
|
|
sst25_sectorerase(priv, esectno); |
|
SET_ERASED(priv); |
|
} |
|
|
|
/* Put the cached sector data into the erase state and mart the cache as dirty |
|
* (but don't update the FLASH yet. The caller will do that at a more optimal |
|
* time). |
|
*/ |
|
|
|
memset(dest, SST25_ERASED_STATE, SST25_SECTOR_SIZE); |
|
SET_DIRTY(priv); |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_cachewrite |
|
************************************************************************************/ |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) && !defined(CONFIG_SST25_READONLY) |
|
static void sst25_cachewrite(FAR struct sst25_dev_s *priv, FAR const uint8_t *buffer, |
|
off_t sector, size_t nsectors) |
|
{ |
|
FAR uint8_t *dest; |
|
|
|
for (; nsectors > 0; nsectors--) |
|
{ |
|
/* First, make sure that the erase block containing 512 byte sector is in |
|
* memory. |
|
*/ |
|
|
|
dest = sst25_cacheread(priv, sector); |
|
|
|
/* Erase the block containing this sector if it is not already erased. |
|
* The erased indicated will be cleared when the data from the erase sector |
|
* is read into the cache and set here when we erase the sector. |
|
*/ |
|
|
|
if (!IS_ERASED(priv)) |
|
{ |
|
off_t esectno = sector >> (priv->sectorshift - SST25_SECTOR_SHIFT); |
|
fvdbg("sector: %ld esectno: %d\n", sector, esectno); |
|
|
|
sst25_sectorerase(priv, esectno); |
|
SET_ERASED(priv); |
|
} |
|
|
|
/* Copy the new sector data into cached erase block */ |
|
|
|
memcpy(dest, buffer, SST25_SECTOR_SIZE); |
|
SET_DIRTY(priv); |
|
|
|
/* Set up for the next 512 byte sector */ |
|
|
|
buffer += SST25_SECTOR_SIZE; |
|
sector++; |
|
} |
|
|
|
/* Flush the last erase block left in the cache */ |
|
|
|
sst25_cacheflush(priv); |
|
} |
|
#endif |
|
|
|
/************************************************************************************ |
|
* Name: sst25_erase |
|
************************************************************************************/ |
|
|
|
static int sst25_erase(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks) |
|
{ |
|
#ifdef CONFIG_SST25_READONLY |
|
return -EACESS |
|
#else |
|
FAR struct sst25_dev_s *priv = (FAR struct sst25_dev_s *)dev; |
|
size_t blocksleft = nblocks; |
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
|
|
|
/* Lock access to the SPI bus until we complete the erase */ |
|
|
|
sst25_lock(priv->dev); |
|
|
|
while (blocksleft-- > 0) |
|
{ |
|
/* Erase each sector */ |
|
|
|
#ifdef CONFIG_SST25_SECTOR512 |
|
sst25_cacheerase(priv, startblock); |
|
#else |
|
sst25_sectorerase(priv, startblock); |
|
#endif |
|
startblock++; |
|
} |
|
|
|
#ifdef CONFIG_SST25_SECTOR512 |
|
/* Flush the last erase block left in the cache */ |
|
|
|
sst25_cacheflush(priv); |
|
#endif |
|
|
|
sst25_unlock(priv->dev); |
|
return (int)nblocks; |
|
#endif |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_bread |
|
************************************************************************************/ |
|
|
|
static ssize_t sst25_bread(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, |
|
FAR uint8_t *buffer) |
|
{ |
|
#ifdef CONFIG_SST25_SECTOR512 |
|
ssize_t nbytes; |
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
|
|
|
/* On this device, we can handle the block read just like the byte-oriented read */ |
|
|
|
nbytes = sst25_read(dev, startblock << SST25_SECTOR_SHIFT, nblocks << SST25_SECTOR_SHIFT, buffer); |
|
if (nbytes > 0) |
|
{ |
|
return nbytes >> SST25_SECTOR_SHIFT; |
|
} |
|
|
|
return (int)nbytes; |
|
#else |
|
FAR struct sst25_dev_s *priv = (FAR struct sst25_dev_s *)dev; |
|
ssize_t nbytes; |
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
|
|
|
/* On this device, we can handle the block read just like the byte-oriented read */ |
|
|
|
nbytes = sst25_read(dev, startblock << priv->sectorshift, nblocks << priv->sectorshift, buffer); |
|
if (nbytes > 0) |
|
{ |
|
return nbytes >> priv->sectorshift; |
|
} |
|
|
|
return (int)nbytes; |
|
#endif |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_bwrite |
|
************************************************************************************/ |
|
|
|
static ssize_t sst25_bwrite(FAR struct mtd_dev_s *dev, off_t startblock, size_t nblocks, |
|
FAR const uint8_t *buffer) |
|
{ |
|
#ifdef CONFIG_SST25_READONLY |
|
return -EACCESS; |
|
#else |
|
FAR struct sst25_dev_s *priv = (FAR struct sst25_dev_s *)dev; |
|
|
|
fvdbg("startblock: %08lx nblocks: %d\n", (long)startblock, (int)nblocks); |
|
|
|
/* Lock the SPI bus and write all of the pages to FLASH */ |
|
|
|
sst25_lock(priv->dev); |
|
|
|
#if defined(CONFIG_SST25_SECTOR512) |
|
sst25_cachewrite(priv, buffer, startblock, nblocks); |
|
#elif defined(CONFIG_SST25_SLOWWRITE) |
|
sst25_bytewrite(priv, buffer, startblock << priv->sectorshift, |
|
nblocks << priv->sectorshift); |
|
#else |
|
sst25_wordwrite(priv, buffer, startblock << priv->sectorshift, |
|
nblocks << priv->sectorshift); |
|
#endif |
|
sst25_unlock(priv->dev); |
|
|
|
return nblocks; |
|
#endif |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_read |
|
************************************************************************************/ |
|
|
|
static ssize_t sst25_read(FAR struct mtd_dev_s *dev, off_t offset, size_t nbytes, |
|
FAR uint8_t *buffer) |
|
{ |
|
FAR struct sst25_dev_s *priv = (FAR struct sst25_dev_s *)dev; |
|
|
|
fvdbg("offset: %08lx nbytes: %d\n", (long)offset, (int)nbytes); |
|
|
|
/* Lock the SPI bus and select this FLASH part */ |
|
|
|
sst25_lock(priv->dev); |
|
sst25_byteread(priv, buffer, offset, nbytes); |
|
sst25_unlock(priv->dev); |
|
|
|
fvdbg("return nbytes: %d\n", (int)nbytes); |
|
return nbytes; |
|
} |
|
|
|
/************************************************************************************ |
|
* Name: sst25_ioctl |
|
************************************************************************************/ |
|
|
|
static int sst25_ioctl(FAR struct mtd_dev_s *dev, int cmd, unsigned long arg) |
|
{ |
|
FAR struct sst25_dev_s *priv = (FAR struct sst25_dev_s *)dev; |
|
int ret = -EINVAL; /* Assume good command with bad parameters */ |
|
|
|
fvdbg("cmd: %d \n", cmd); |
|
|
|
switch (cmd) |
|
{ |
|
case MTDIOC_GEOMETRY: |
|
{ |
|
FAR struct mtd_geometry_s *geo = (FAR struct mtd_geometry_s *)((uintptr_t)arg); |
|
if (geo) |
|
{ |
|
/* Populate the geometry structure with information need to know |
|
* the capacity and how to access the device. |
|
* |
|
* NOTE: that the device is treated as though it where just an array |
|
* of fixed size blocks. That is most likely not true, but the client |
|
* will expect the device logic to do whatever is necessary to make it |
|
* appear so. |
|
*/ |
|
|
|
#ifdef CONFIG_SST25_SECTOR512 |
|
geo->blocksize = (1 << SST25_SECTOR_SHIFT); |
|
geo->erasesize = (1 << SST25_SECTOR_SHIFT); |
|
geo->neraseblocks = priv->nsectors << (priv->sectorshift - ); |
|
#else |
|
geo->blocksize = (1 << priv->sectorshift); |
|
geo->erasesize = (1 << priv->sectorshift); |
|
geo->neraseblocks = priv->nsectors; |
|
#endif |
|
ret = OK; |
|
|
|
fvdbg("blocksize: %d erasesize: %d neraseblocks: %d\n", |
|
geo->blocksize, geo->erasesize, geo->neraseblocks); |
|
} |
|
} |
|
break; |
|
|
|
case MTDIOC_BULKERASE: |
|
{ |
|
/* Erase the entire device */ |
|
|
|
sst25_lock(priv->dev); |
|
ret = sst25_chiperase(priv); |
|
sst25_unlock(priv->dev); |
|
} |
|
break; |
|
|
|
case MTDIOC_XIPBASE: |
|
default: |
|
ret = -ENOTTY; /* Bad command */ |
|
break; |
|
} |
|
|
|
fvdbg("return %d\n", ret); |
|
return ret; |
|
} |
|
|
|
/************************************************************************************ |
|
* Public Functions |
|
************************************************************************************/ |
|
|
|
/************************************************************************************ |
|
* Name: sst25_initialize |
|
* |
|
* Description: |
|
* Create an initialize MTD device instance. MTD devices are not registered |
|
* in the file system, but are created as instances that can be bound to |
|
* other functions (such as a block or character driver front end). |
|
* |
|
************************************************************************************/ |
|
|
|
FAR struct mtd_dev_s *sst25_initialize(FAR struct spi_dev_s *dev) |
|
{ |
|
FAR struct sst25_dev_s *priv; |
|
int ret; |
|
|
|
fvdbg("dev: %p\n", dev); |
|
|
|
/* Allocate a state structure (we allocate the structure instead of using |
|
* a fixed, static allocation so that we can handle multiple FLASH devices. |
|
* The current implementation would handle only one FLASH part per SPI |
|
* device (only because of the SPIDEV_FLASH definition) and so would have |
|
* to be extended to handle multiple FLASH parts on the same SPI bus. |
|
*/ |
|
|
|
priv = (FAR struct sst25_dev_s *)kzalloc(sizeof(struct sst25_dev_s)); |
|
if (priv) |
|
{ |
|
/* Initialize the allocated structure */ |
|
|
|
priv->mtd.erase = sst25_erase; |
|
priv->mtd.bread = sst25_bread; |
|
priv->mtd.bwrite = sst25_bwrite; |
|
priv->mtd.read = sst25_read; |
|
priv->mtd.ioctl = sst25_ioctl; |
|
priv->dev = dev; |
|
|
|
/* Deselect the FLASH */ |
|
|
|
SPI_SELECT(dev, SPIDEV_FLASH, false); |
|
|
|
/* Identify the FLASH chip and get its capacity */ |
|
|
|
ret = sst25_readid(priv); |
|
if (ret != OK) |
|
{ |
|
/* Unrecognized! Discard all of that work we just did and return NULL */ |
|
|
|
fdbg("Unrecognized\n"); |
|
kfree(priv); |
|
priv = NULL; |
|
} |
|
else |
|
{ |
|
/* Make sure the the FLASH is unprotected so that we can write into it */ |
|
|
|
#ifndef CONFIG_SST25_READONLY |
|
sst25_unprotect(priv->dev); |
|
#endif |
|
|
|
#ifdef CONFIG_SST25_SECTOR512 /* Simulate a 512 byte sector */ |
|
/* Allocate a buffer for the erase block cache */ |
|
|
|
priv->sector = (FAR uint8_t *)kmalloc(1 << priv->sectorshift); |
|
if (!priv->sector) |
|
{ |
|
/* Allocation failed! Discard all of that work we just did and return NULL */ |
|
|
|
fdbg("Allocation failed\n"); |
|
kfree(priv); |
|
priv = NULL; |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
/* Return the implementation-specific state structure as the MTD device */ |
|
|
|
fvdbg("Return %p\n", priv); |
|
return (FAR struct mtd_dev_s *)priv; |
|
}
|
|
|