You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
8.1 KiB
162 lines
8.1 KiB
#!/usr/bin/env python3 |
|
############################################################################ |
|
# |
|
# Copyright (c) 2020 ECL Development Team. All rights reserved. |
|
# |
|
# Redistribution and use in source and binary forms, with or without |
|
# modification, are permitted provided that the following conditions |
|
# are met: |
|
# |
|
# 1. Redistributions of source code must retain the above copyright |
|
# notice, this list of conditions and the following disclaimer. |
|
# 2. Redistributions in binary form must reproduce the above copyright |
|
# notice, this list of conditions and the following disclaimer in |
|
# the documentation and/or other materials provided with the |
|
# distribution. |
|
# 3. Neither the name ECL nor the names of its contributors may be |
|
# used to endorse or promote products derived from this software |
|
# without specific prior written permission. |
|
# |
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
# POSSIBILITY OF SUCH DAMAGE. |
|
# |
|
############################################################################ |
|
|
|
import json |
|
import urllib.request |
|
|
|
SAMPLING_RES = 10 |
|
SAMPLING_MIN_LAT = -80 |
|
SAMPLING_MAX_LAT = 80 |
|
SAMPLING_MIN_LON = -180 |
|
SAMPLING_MAX_LON = 180 |
|
|
|
def constrain(n, nmin, nmax): |
|
return max(min(nmin, n), nmax) |
|
|
|
header = """/**************************************************************************** |
|
* |
|
* Copyright (C) 2020 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
""" |
|
print(header) |
|
|
|
print('#include <stdint.h>\n') |
|
|
|
LAT_DIM=int((SAMPLING_MAX_LAT-SAMPLING_MIN_LAT)/SAMPLING_RES)+1 |
|
LON_DIM=int((SAMPLING_MAX_LON-SAMPLING_MIN_LON)/SAMPLING_RES)+1 |
|
|
|
print('static constexpr float SAMPLING_RES = {}'.format(SAMPLING_RES) + ';') |
|
print('static constexpr float SAMPLING_MIN_LAT = {}'.format(SAMPLING_MIN_LAT) + ';') |
|
print('static constexpr float SAMPLING_MAX_LAT = {}'.format(SAMPLING_MAX_LAT) + ';') |
|
print('static constexpr float SAMPLING_MIN_LON = {}'.format(SAMPLING_MIN_LON) + ';') |
|
print('static constexpr float SAMPLING_MAX_LON = {}'.format(SAMPLING_MAX_LON) + ';') |
|
print('') |
|
print('static constexpr int LAT_DIM = {}'.format(LAT_DIM) + ';') |
|
print('static constexpr int LON_DIM = {}'.format(LON_DIM) + ';') |
|
print('\n') |
|
|
|
# Declination |
|
params = urllib.parse.urlencode({'lat1': 0, 'lat2': 0, 'lon1': 0, 'lon2': 0, 'latStepSize': 1, 'lonStepSize': 1, 'magneticComponent': 'd', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
print("// Magnetic declination data in degrees") |
|
print('// Model: {},'.format(data['model'])) |
|
print('// Version: {},'.format(data['version'])) |
|
print('// Date: {},'.format(data['result'][0]['date'])) |
|
print('static constexpr const int8_t declination_table[{}][{}]'.format(LAT_DIM, LON_DIM) + " {") |
|
for latitude in range(SAMPLING_MIN_LAT, SAMPLING_MAX_LAT+1, SAMPLING_RES): |
|
params = urllib.parse.urlencode({'lat1': latitude, 'lat2': latitude, 'lon1': SAMPLING_MIN_LON, 'lon2': SAMPLING_MAX_LON, 'latStepSize': 1, 'lonStepSize': SAMPLING_RES, 'magneticComponent': 'd', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
|
|
|
|
print(' { ', end='') |
|
for p in data['result']: |
|
declination_int = constrain(int(round(p['declination'])), 127, -128) |
|
print('{0:4d},'.format(declination_int), end='') |
|
|
|
print(' },') |
|
print("};\n") |
|
|
|
# Inclination |
|
params = urllib.parse.urlencode({'lat1': 0, 'lat2': 0, 'lon1': 0, 'lon2': 0, 'latStepSize': 1, 'lonStepSize': 1, 'magneticComponent': 'i', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
print("// Magnetic inclination data in degrees") |
|
print('// Model: {},'.format(data['model'])) |
|
print('// Version: {},'.format(data['version'])) |
|
print('// Date: {},'.format(data['result'][0]['date'])) |
|
print('static constexpr const int8_t inclination_table[{}][{}]'.format(LAT_DIM, LON_DIM) + " {") |
|
for latitude in range(SAMPLING_MIN_LAT, SAMPLING_MAX_LAT+1, SAMPLING_RES): |
|
params = urllib.parse.urlencode({'lat1': latitude, 'lat2': latitude, 'lon1': SAMPLING_MIN_LON, 'lon2': SAMPLING_MAX_LON, 'latStepSize': 1, 'lonStepSize': SAMPLING_RES, 'magneticComponent': 'i', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
|
|
print(' { ', end='') |
|
for p in data['result']: |
|
inclination_int = constrain(int(round(p['inclination'])), 127, -128) |
|
print('{0:4d},'.format(inclination_int), end='') |
|
|
|
print(' },') |
|
print("};\n") |
|
|
|
# total intensity |
|
params = urllib.parse.urlencode({'lat1': 0, 'lat2': 0, 'lon1': 0, 'lon2': 0, 'latStepSize': 1, 'lonStepSize': 1, 'magneticComponent': 'i', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
print("// Magnetic strength data in micro-Tesla or centi-Gauss") |
|
print('// Model: {},'.format(data['model'])) |
|
print('// Version: {},'.format(data['version'])) |
|
print('// Date: {},'.format(data['result'][0]['date'])) |
|
print('static constexpr const int8_t strength_table[{}][{}]'.format(LAT_DIM, LON_DIM) + " {") |
|
for latitude in range(SAMPLING_MIN_LAT, SAMPLING_MAX_LAT+1, SAMPLING_RES): |
|
params = urllib.parse.urlencode({'lat1': latitude, 'lat2': latitude, 'lon1': SAMPLING_MIN_LON, 'lon2': SAMPLING_MAX_LON, 'latStepSize': 1, 'lonStepSize': SAMPLING_RES, 'magneticComponent': 'f', 'resultFormat': 'json'}) |
|
f = urllib.request.urlopen("https://www.ngdc.noaa.gov/geomag-web/calculators/calculateIgrfgrid?%s" % params) |
|
data = json.loads(f.read()) |
|
|
|
print(' { ', end='') |
|
for p in data['result']: |
|
totalintensity_int = int(round(p['totalintensity'] / 1000)) |
|
print('{0:4d},'.format(totalintensity_int), end='') |
|
|
|
print(' },') |
|
print("};")
|
|
|