You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
577 lines
18 KiB
577 lines
18 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file ekf_helper.cpp |
|
* Definition of ekf helper functions. |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* |
|
*/ |
|
|
|
#include "ekf.h" |
|
#ifdef __PX4_POSIX |
|
#include <iostream> |
|
#include <fstream> |
|
#endif |
|
#include <iomanip> |
|
#include "mathlib.h" |
|
|
|
// Reset the velocity states. If we have a recent and valid |
|
// gps measurement then use for velocity initialisation |
|
bool Ekf::resetVelocity() |
|
{ |
|
// if we have a valid GPS measurement use it to initialise velocity states |
|
gpsSample gps_newest = _gps_buffer.get_newest(); |
|
|
|
if (_time_last_imu - gps_newest.time_us < 400000) { |
|
_state.vel = gps_newest.vel; |
|
return true; |
|
|
|
} else { |
|
// XXX use the value of the last known velocity |
|
return false; |
|
} |
|
} |
|
|
|
// Reset position states. If we have a recent and valid |
|
// gps measurement then use for position initialisation |
|
bool Ekf::resetPosition() |
|
{ |
|
// if we have a fresh GPS measurement, use it to initialise position states and correct the position for the measurement delay |
|
gpsSample gps_newest = _gps_buffer.get_newest(); |
|
|
|
float time_delay = 1e-6f * (float)(_time_last_imu - gps_newest.time_us); |
|
|
|
if (time_delay < 0.4f) { |
|
_state.pos(0) = gps_newest.pos(0) + gps_newest.vel(0) * time_delay; |
|
_state.pos(1) = gps_newest.pos(1) + gps_newest.vel(1) * time_delay; |
|
return true; |
|
|
|
} else { |
|
// XXX use the value of the last known position |
|
return false; |
|
} |
|
} |
|
|
|
// Reset height state using the last height measurement |
|
void Ekf::resetHeight() |
|
{ |
|
// Get the most recent GPS data |
|
gpsSample gps_newest = _gps_buffer.get_newest(); |
|
|
|
// store the current vertical position and velocity for reference so we can calculate and publish the reset amount |
|
float old_vert_pos = _state.pos(2); |
|
bool vert_pos_reset = false; |
|
float old_vert_vel = _state.vel(2); |
|
bool vert_vel_reset = false; |
|
|
|
// reset the vertical position |
|
if (_control_status.flags.rng_hgt) { |
|
rangeSample range_newest = _range_buffer.get_newest(); |
|
|
|
if (_time_last_imu - range_newest.time_us < 2 * RNG_MAX_INTERVAL) { |
|
// calculate the new vertical position using range sensor |
|
float new_pos_down = _hgt_sensor_offset - range_newest.rng; |
|
|
|
// update the state and assoicated variance |
|
_state.pos(2) = new_pos_down; |
|
|
|
// reset the associated covariance values |
|
zeroRows(P, 8, 8); |
|
zeroCols(P, 8, 8); |
|
|
|
// the state variance is the same as the observation |
|
P[8][8] = sq(_params.range_noise); |
|
|
|
vert_pos_reset = true; |
|
|
|
} else { |
|
// TODO: reset to last known range based estimate |
|
} |
|
|
|
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup |
|
baroSample baro_newest = _baro_buffer.get_newest(); |
|
_baro_hgt_offset = baro_newest.hgt + _state.pos(2); |
|
|
|
} else if (_control_status.flags.baro_hgt) { |
|
// initialize vertical position with newest baro measurement |
|
baroSample baro_newest = _baro_buffer.get_newest(); |
|
|
|
if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) { |
|
_state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset; |
|
|
|
// reset the associated covariance values |
|
zeroRows(P, 8, 8); |
|
zeroCols(P, 8, 8); |
|
|
|
// the state variance is th esame as the observation |
|
P[8][8] = sq(_params.baro_noise); |
|
|
|
vert_pos_reset = true; |
|
|
|
} else { |
|
// TODO: reset to last known baro based estimate |
|
} |
|
|
|
} else if (_control_status.flags.gps_hgt) { |
|
// initialize vertical position and velocity with newest gps measurement |
|
if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) { |
|
_state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref; |
|
|
|
// reset the associated covarince values |
|
zeroRows(P, 8, 8); |
|
zeroCols(P, 8, 8); |
|
|
|
// the state variance is the same as the observation |
|
P[8][8] = sq(gps_newest.hacc); |
|
|
|
vert_pos_reset = true; |
|
|
|
} else { |
|
// TODO: reset to last known gps based estimate |
|
} |
|
|
|
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup |
|
baroSample baro_newest = _baro_buffer.get_newest(); |
|
_baro_hgt_offset = baro_newest.hgt + _state.pos(2); |
|
} |
|
|
|
// reset the vertical velocity covariance values |
|
zeroRows(P, 5, 5); |
|
zeroCols(P, 5, 5); |
|
|
|
// reset the vertical velocity state |
|
if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) { |
|
// If we are using GPS, then use it to reset the vertical velocity |
|
_state.vel(2) = gps_newest.vel(2); |
|
|
|
// the state variance is the same as the observation |
|
P[5][5] = sq(1.5f * gps_newest.sacc); |
|
|
|
} else { |
|
// we don't know what the vertical velocity is, so set it to zero |
|
_state.vel(2) = 0.0f; |
|
|
|
// Set the variance to a value large enough to allow the state to converge quickly |
|
// that does not destabilise the filter |
|
P[5][5] = fminf(sq(_state.vel(2)),100.0f); |
|
|
|
} |
|
vert_vel_reset = true; |
|
|
|
// store the reset amount and time to be published |
|
if (vert_pos_reset) { |
|
_vert_pos_reset_delta = _state.pos(2) - old_vert_pos; |
|
_time_vert_pos_reset = _time_last_imu; |
|
} |
|
|
|
if (vert_vel_reset) { |
|
_vert_vel_reset_delta = _state.vel(2) - old_vert_vel; |
|
_time_vert_vel_reset = _time_last_imu; |
|
} |
|
|
|
// add the reset amount to the output observer states |
|
_output_new.pos(2) += _vert_pos_reset_delta; |
|
_output_new.vel(2) += _vert_vel_reset_delta; |
|
|
|
// add the reset amount to the output observer buffered data |
|
outputSample output_states; |
|
unsigned output_length = _output_buffer.get_length(); |
|
for (unsigned i=0; i < output_length; i++) { |
|
output_states = _output_buffer.get_from_index(i); |
|
|
|
if (vert_pos_reset) { |
|
output_states.pos(2) += _vert_pos_reset_delta; |
|
} |
|
|
|
if (vert_vel_reset) { |
|
output_states.vel(2) += _vert_vel_reset_delta; |
|
} |
|
|
|
_output_buffer.push_to_index(i,output_states); |
|
|
|
} |
|
|
|
} |
|
|
|
// Reset heading and magnetic field states |
|
bool Ekf::resetMagHeading(Vector3f &mag_init) |
|
{ |
|
// If we don't a tilt estimate then we cannot initialise the yaw |
|
if (!_control_status.flags.tilt_align) { |
|
return false; |
|
} |
|
|
|
// get the roll, pitch, yaw estimates and set the yaw to zero |
|
matrix::Quaternion<float> q(_state.quat_nominal(0), _state.quat_nominal(1), _state.quat_nominal(2), |
|
_state.quat_nominal(3)); |
|
matrix::Euler<float> euler_init(q); |
|
euler_init(2) = 0.0f; |
|
|
|
// rotate the magnetometer measurements into earth axes |
|
matrix::Dcm<float> R_to_earth_zeroyaw(euler_init); |
|
Vector3f mag_ef_zeroyaw = R_to_earth_zeroyaw * mag_init; |
|
euler_init(2) = _mag_declination - atan2f(mag_ef_zeroyaw(1), mag_ef_zeroyaw(0)); |
|
|
|
// calculate initial quaternion states for the ekf |
|
// we don't change the output attitude to avoid jumps |
|
_state.quat_nominal = Quaternion(euler_init); |
|
|
|
// reset the angle error variances because the yaw angle could have changed by a significant amount |
|
// by setting them to zero we avoid 'kicks' in angle when 3-D fusion starts and the imu process noise |
|
// will grow them again. |
|
zeroRows(P, 0, 2); |
|
zeroCols(P, 0, 2); |
|
|
|
// calculate initial earth magnetic field states |
|
matrix::Dcm<float> R_to_earth(euler_init); |
|
_state.mag_I = R_to_earth * mag_init; |
|
|
|
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance |
|
zeroRows(P, 16, 21); |
|
zeroCols(P, 16, 21); |
|
|
|
for (uint8_t index = 16; index <= 21; index ++) { |
|
P[index][index] = sq(_params.mag_noise); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// Calculate the magnetic declination to be used by the alignment and fusion processing |
|
void Ekf::calcMagDeclination() |
|
{ |
|
// set source of magnetic declination for internal use |
|
if (_params.mag_declination_source & MASK_USE_GEO_DECL) { |
|
// use parameter value until GPS is available, then use value returned by geo library |
|
if (_NED_origin_initialised) { |
|
_mag_declination = _mag_declination_gps; |
|
_mag_declination_to_save_deg = math::degrees(_mag_declination); |
|
|
|
} else { |
|
_mag_declination = math::radians(_params.mag_declination_deg); |
|
_mag_declination_to_save_deg = _params.mag_declination_deg; |
|
} |
|
|
|
} else { |
|
// always use the parameter value |
|
_mag_declination = math::radians(_params.mag_declination_deg); |
|
_mag_declination_to_save_deg = _params.mag_declination_deg; |
|
} |
|
} |
|
|
|
// This function forces the covariance matrix to be symmetric |
|
void Ekf::makeSymmetrical() |
|
{ |
|
for (unsigned row = 0; row < _k_num_states; row++) { |
|
for (unsigned column = 0; column < row; column++) { |
|
float tmp = (P[row][column] + P[column][row]) / 2; |
|
P[row][column] = tmp; |
|
P[column][row] = tmp; |
|
} |
|
} |
|
} |
|
|
|
void Ekf::constrainStates() |
|
{ |
|
for (int i = 0; i < 3; i++) { |
|
_state.ang_error(i) = math::constrain(_state.ang_error(i), -1.0f, 1.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -0.349066f * _dt_imu_avg, 0.349066f * _dt_imu_avg); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.gyro_scale(i) = math::constrain(_state.gyro_scale(i), 0.95f, 1.05f); |
|
} |
|
|
|
_state.accel_z_bias = math::constrain(_state.accel_z_bias, -1.0f * _dt_imu_avg, 1.0f * _dt_imu_avg); |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
_state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f); |
|
} |
|
|
|
for (int i = 0; i < 2; i++) { |
|
_state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f); |
|
} |
|
} |
|
|
|
// calculate the earth rotation vector |
|
void Ekf::calcEarthRateNED(Vector3f &omega, double lat_rad) const |
|
{ |
|
omega(0) = _k_earth_rate * cosf((float)lat_rad); |
|
omega(1) = 0.0f; |
|
omega(2) = -_k_earth_rate * sinf((float)lat_rad); |
|
} |
|
|
|
// gets the innovations of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void Ekf::get_vel_pos_innov(float vel_pos_innov[6]) |
|
{ |
|
memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6); |
|
} |
|
|
|
// writes the innovations of the earth magnetic field measurements |
|
void Ekf::get_mag_innov(float mag_innov[3]) |
|
{ |
|
memcpy(mag_innov, _mag_innov, 3 * sizeof(float)); |
|
} |
|
|
|
// gets the innovations of the airspeed measnurement |
|
void Ekf::get_airspeed_innov(float *airspeed_innov) |
|
{ |
|
memcpy(airspeed_innov,&_airspeed_innov, sizeof(float)); |
|
} |
|
|
|
// gets the innovations of the heading measurement |
|
void Ekf::get_heading_innov(float *heading_innov) |
|
{ |
|
memcpy(heading_innov, &_heading_innov, sizeof(float)); |
|
} |
|
|
|
// gets the innovation variances of velocity and position measurements |
|
// 0-2 vel, 3-5 pos |
|
void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6]) |
|
{ |
|
memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6); |
|
} |
|
|
|
// gets the innovation variances of the earth magnetic field measurements |
|
void Ekf::get_mag_innov_var(float mag_innov_var[3]) |
|
{ |
|
memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3); |
|
} |
|
|
|
// gest the innovation variance of the airspeed measurement |
|
void Ekf::get_airspeed_innov_var(float *airspeed_innov_var) |
|
{ |
|
memcpy(airspeed_innov_var, &_airspeed_innov_var, sizeof(float)); |
|
} |
|
|
|
// gets the innovation variance of the heading measurement |
|
void Ekf::get_heading_innov_var(float *heading_innov_var) |
|
{ |
|
memcpy(heading_innov_var, &_heading_innov_var, sizeof(float)); |
|
} |
|
|
|
// get GPS check status |
|
void Ekf::get_gps_check_status(uint16_t *val) |
|
{ |
|
*val = _gps_check_fail_status.value; |
|
} |
|
|
|
// get the state vector at the delayed time horizon |
|
void Ekf::get_state_delayed(float *state) |
|
{ |
|
for (int i = 0; i < 3; i++) { |
|
state[i] = _state.ang_error(i); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 3] = _state.vel(i); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 6] = _state.pos(i); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 9] = _state.gyro_bias(i); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 12] = _state.gyro_scale(i); |
|
} |
|
|
|
state[15] = _state.accel_z_bias; |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 16] = _state.mag_I(i); |
|
} |
|
|
|
for (int i = 0; i < 3; i++) { |
|
state[i + 19] = _state.mag_B(i); |
|
} |
|
|
|
for (int i = 0; i < 2; i++) { |
|
state[i + 22] = _state.wind_vel(i); |
|
} |
|
} |
|
|
|
// get the diagonal elements of the covariance matrix |
|
void Ekf::get_covariances(float *covariances) |
|
{ |
|
for (unsigned i = 0; i < _k_num_states; i++) { |
|
covariances[i] = P[i][i]; |
|
} |
|
} |
|
|
|
// get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set |
|
void Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt) |
|
{ |
|
memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t)); |
|
memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s)); |
|
memcpy(origin_alt, &_gps_alt_ref, sizeof(float)); |
|
} |
|
|
|
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position |
|
void Ekf::get_ekf_accuracy(float *ekf_eph, float *ekf_epv, bool *dead_reckoning) |
|
{ |
|
// report absolute accuracy taking into account the uncertainty in location of the origin |
|
// TODO we a need a way to allow for baro drift error |
|
float temp1 = sqrtf(P[6][6] + P[7][7] + sq(_gps_origin_eph)); |
|
float temp2 = sqrtf(P[8][8] + sq(_gps_origin_epv)); |
|
memcpy(ekf_eph, &temp1, sizeof(float)); |
|
memcpy(ekf_epv, &temp2, sizeof(float)); |
|
|
|
// report dead reckoning if it is more than a second since we fused in GPS |
|
bool temp3 = (_time_last_imu - _time_last_pos_fuse > 1e6); |
|
memcpy(dead_reckoning, &temp3, sizeof(bool)); |
|
} |
|
|
|
// fuse measurement |
|
void Ekf::fuse(float *K, float innovation) |
|
{ |
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.ang_error(i) = _state.ang_error(i) - K[i] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.vel(i) = _state.vel(i) - K[i + 3] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.pos(i) = _state.pos(i) - K[i + 6] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 9] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.gyro_scale(i) = _state.gyro_scale(i) - K[i + 12] * innovation; |
|
} |
|
|
|
_state.accel_z_bias -= K[15] * innovation; |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 3; i++) { |
|
_state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation; |
|
} |
|
|
|
for (unsigned i = 0; i < 2; i++) { |
|
_state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation; |
|
} |
|
} |
|
|
|
// zero specified range of rows in the state covariance matrix |
|
void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) |
|
{ |
|
uint8_t row; |
|
|
|
for (row = first; row <= last; row++) { |
|
memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24); |
|
} |
|
} |
|
|
|
// zero specified range of columns in the state covariance matrix |
|
void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last) |
|
{ |
|
uint8_t row; |
|
|
|
for (row = 0; row <= 23; row++) { |
|
memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first)); |
|
} |
|
} |
|
|
|
bool Ekf::global_position_is_valid() |
|
{ |
|
// return true if the position estimate is valid |
|
// TODO implement proper check based on published GPS accuracy, innovation consistency checks and timeout status |
|
return (_NED_origin_initialised && ((_time_last_imu - _time_last_gps) < 5e6) && _control_status.flags.gps); |
|
} |
|
|
|
// perform a vector cross product |
|
Vector3f EstimatorInterface::cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2) |
|
{ |
|
Vector3f vecOut; |
|
vecOut(0) = vecIn1(1)*vecIn2(2) - vecIn1(2)*vecIn2(1); |
|
vecOut(1) = vecIn1(2)*vecIn2(0) - vecIn1(0)*vecIn2(2); |
|
vecOut(2) = vecIn1(0)*vecIn2(1) - vecIn1(1)*vecIn2(0); |
|
return vecOut; |
|
} |
|
|
|
// calculate the inverse rotation matrix from a quaternion rotation |
|
Matrix3f EstimatorInterface::quat_to_invrotmat(const Quaternion quat) |
|
{ |
|
float q00 = quat(0) * quat(0); |
|
float q11 = quat(1) * quat(1); |
|
float q22 = quat(2) * quat(2); |
|
float q33 = quat(3) * quat(3); |
|
float q01 = quat(0) * quat(1); |
|
float q02 = quat(0) * quat(2); |
|
float q03 = quat(0) * quat(3); |
|
float q12 = quat(1) * quat(2); |
|
float q13 = quat(1) * quat(3); |
|
float q23 = quat(2) * quat(3); |
|
|
|
Matrix3f dcm; |
|
dcm(0,0) = q00 + q11 - q22 - q33; |
|
dcm(1,1) = q00 - q11 + q22 - q33; |
|
dcm(2,2) = q00 - q11 - q22 + q33; |
|
dcm(0,1) = 2.0f * (q12 - q03); |
|
dcm(0,2) = 2.0f * (q13 + q02); |
|
dcm(1,0) = 2.0f * (q12 + q03); |
|
dcm(1,2) = 2.0f * (q23 - q01); |
|
dcm(2,0) = 2.0f * (q13 - q02); |
|
dcm(2,1) = 2.0f * (q23 + q01); |
|
|
|
return dcm; |
|
}
|
|
|