You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
404 lines
13 KiB
404 lines
13 KiB
#include "test_macros.hpp" |
|
#include <matrix/math.hpp> |
|
#include <iostream> |
|
|
|
using namespace matrix; |
|
|
|
// manually instantiated all files we intend to test |
|
// so that coverage works correctly |
|
// doesn't matter what test this is in |
|
namespace matrix { |
|
template class Matrix<float, 3, 3>; |
|
template class Vector3<float>; |
|
template class Vector2<float>; |
|
template class Vector<float, 4>; |
|
template class Quaternion<float>; |
|
template class AxisAngle<float>; |
|
template class Scalar<float>; |
|
template class SquareMatrix<float, 4>; |
|
} |
|
|
|
int main() |
|
{ |
|
// check data |
|
Eulerf euler_check(0.1f, 0.2f, 0.3f); |
|
Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f); |
|
float dcm_data[] = { |
|
0.93629336f, -0.27509585f, 0.21835066f, |
|
0.28962948f, 0.95642509f, -0.03695701f, |
|
-0.19866933f, 0.0978434f, 0.97517033f |
|
}; |
|
Dcmf dcm_check(dcm_data); |
|
|
|
// euler ctor |
|
TEST(isEqual(euler_check, Vector3f(0.1f, 0.2f, 0.3f))); |
|
|
|
// euler default ctor |
|
Eulerf e; |
|
Eulerf e_zero = zeros<float, 3, 1>(); |
|
TEST(isEqual(e, e_zero)); |
|
TEST(isEqual(e, e)); |
|
|
|
// euler vector ctor |
|
Vector3f v(0.1f, 0.2f, 0.3f); |
|
Eulerf euler_copy(v); |
|
TEST(isEqual(euler_copy, euler_check)); |
|
|
|
// quaternion ctor |
|
Quatf q0(1, 2, 3, 4); |
|
Quatf q(q0); |
|
double eps = 1e-6; |
|
TEST(fabs(q(0) - 1) < eps); |
|
TEST(fabs(q(1) - 2) < eps); |
|
TEST(fabs(q(2) - 3) < eps); |
|
TEST(fabs(q(3) - 4) < eps); |
|
|
|
// quaternion ctor: vector to vector |
|
// identity test |
|
Quatf quat_v(v,v); |
|
TEST(isEqual(quat_v.conjugate(v), v)); |
|
// random test (vector norm can not be preserved with a pure rotation) |
|
Vector3f v1(-80.1f, 1.5f, -6.89f); |
|
quat_v = Quatf(v1, v); |
|
TEST(isEqual(quat_v.conjugate(v1).normalized() * v.norm(), v)); |
|
// special 180 degree case 1 |
|
v1 = Vector3f(0.f, 1.f, 1.f); |
|
quat_v = Quatf(v1, -v1); |
|
TEST(isEqual(quat_v.conjugate(v1), -v1)); |
|
// special 180 degree case 2 |
|
v1 = Vector3f(1.f, 2.f, 0.f); |
|
quat_v = Quatf(v1, -v1); |
|
TEST(isEqual(quat_v.conjugate(v1), -v1)); |
|
// special 180 degree case 3 |
|
v1 = Vector3f(0.f, 0.f, 1.f); |
|
quat_v = Quatf(v1, -v1); |
|
TEST(isEqual(quat_v.conjugate(v1), -v1)); |
|
// special 180 degree case 4 |
|
v1 = Vector3f(1.f, 1.f, 1.f); |
|
quat_v = Quatf(v1, -v1); |
|
TEST(isEqual(quat_v.conjugate(v1), -v1)); |
|
|
|
// quat normalization |
|
q.normalize(); |
|
TEST(isEqual(q, Quatf(0.18257419f, 0.36514837f, |
|
0.54772256f, 0.73029674f))); |
|
TEST(isEqual(q0.unit(), q)); |
|
TEST(isEqual(q0.unit(), q0.normalized())); |
|
|
|
// quat default ctor |
|
q = Quatf(); |
|
TEST(isEqual(q, Quatf(1, 0, 0, 0))); |
|
|
|
// euler to quaternion |
|
q = Quatf(euler_check); |
|
TEST(isEqual(q, q_check)); |
|
|
|
// euler to dcm |
|
Dcmf dcm(euler_check); |
|
TEST(isEqual(dcm, dcm_check)); |
|
|
|
// quaternion to euler |
|
Eulerf e1(q_check); |
|
TEST(isEqual(e1, euler_check)); |
|
|
|
// quaternion to dcm |
|
Dcmf dcm1(q_check); |
|
TEST(isEqual(dcm1, dcm_check)); |
|
// quaternion z-axis unit base vector |
|
Vector3f q_z = q_check.dcm_z(); |
|
Vector3f R_z(dcm_check(0, 2), dcm_check(1, 2), dcm_check(2, 2)); |
|
TEST(isEqual(q_z, R_z)); |
|
|
|
// dcm default ctor |
|
Dcmf dcm2; |
|
SquareMatrix<float, 3> I = eye<float, 3>(); |
|
TEST(isEqual(dcm2, I)); |
|
|
|
// dcm to euler |
|
Eulerf e2(dcm_check); |
|
TEST(isEqual(e2, euler_check)); |
|
|
|
// dcm to quaterion |
|
Quatf q2(dcm_check); |
|
TEST(isEqual(q2, q_check)); |
|
|
|
// dcm renormalize |
|
Dcmf A = eye<float, 3>(); |
|
Dcmf R(euler_check); |
|
for (size_t i = 0; i < 1000; i++) { |
|
A = R * A; |
|
} |
|
|
|
A.renormalize(); |
|
float err = 0.0f; |
|
|
|
for (size_t r = 0; r < 3; r++) { |
|
Vector3f rvec(matrix::Matrix<float,1,3>(A.row(r)).transpose()); |
|
err += fabs(1.0f - rvec.length()); |
|
} |
|
TEST(err < eps); |
|
|
|
// constants |
|
double deg2rad = M_PI / 180.0; |
|
double rad2deg = 180.0 / M_PI; |
|
|
|
// euler dcm round trip check |
|
for (double roll = -90; roll <= 90; roll += 90) { |
|
for (double pitch = -90; pitch <= 90; pitch += 90) { |
|
for (double yaw = -179; yaw <= 180; yaw += 90) { |
|
// note if theta = pi/2, then roll is set to zero |
|
double roll_expected = roll; |
|
double yaw_expected = yaw; |
|
|
|
if (fabs(pitch -90) < eps) { |
|
roll_expected = 0; |
|
yaw_expected = yaw - roll; |
|
|
|
} else if (fabs(pitch + 90) < eps) { |
|
roll_expected = 0; |
|
yaw_expected = yaw + roll; |
|
} |
|
|
|
if (yaw_expected < -180) { |
|
yaw_expected += 360; |
|
} |
|
|
|
if (yaw_expected > 180) { |
|
yaw_expected -= 360; |
|
} |
|
|
|
//printf("roll:%d pitch:%d yaw:%d\n", roll, pitch, yaw); |
|
Euler<double> euler_expected( |
|
deg2rad * roll_expected, |
|
deg2rad * pitch, |
|
deg2rad * yaw_expected); |
|
Euler<double> euler( |
|
deg2rad * roll, |
|
deg2rad * pitch, |
|
deg2rad * yaw); |
|
Dcm<double> dcm_from_euler(euler); |
|
//dcm_from_euler.print(); |
|
Euler<double> euler_out(dcm_from_euler); |
|
TEST(isEqual(rad2deg * euler_expected, rad2deg * euler_out)); |
|
|
|
Eulerf eulerf_expected( |
|
float(deg2rad)*float(roll_expected), |
|
float(deg2rad)*float(pitch), |
|
float(deg2rad)*float(yaw_expected)); |
|
Eulerf eulerf(float(deg2rad)*float(roll), |
|
float(deg2rad)*float(pitch), |
|
float(deg2rad)*float(yaw)); |
|
Dcm<float> dcm_from_eulerf; |
|
dcm_from_eulerf = eulerf; |
|
Euler<float> euler_outf(dcm_from_eulerf); |
|
TEST(isEqual(float(rad2deg)*eulerf_expected, |
|
float(rad2deg)*euler_outf)); |
|
} |
|
} |
|
} |
|
|
|
// quaterion copy ctors |
|
float data_v4[] = {1, 2, 3, 4}; |
|
Vector<float, 4> v4(data_v4); |
|
Quatf q_from_v(v4); |
|
TEST(isEqual(q_from_v, v4)); |
|
|
|
Matrix<float, 4, 1> m4(data_v4); |
|
Quatf q_from_m(m4); |
|
TEST(isEqual(q_from_m, m4)); |
|
|
|
// quaternion derivative in frame 1 |
|
Quatf q1(0, 1, 0, 0); |
|
Vector<float, 4> q1_dot1 = q1.derivative1(Vector3f(1, 2, 3)); |
|
float data_q_dot1_check[] = { -0.5f, 0.0f, -1.5f, 1.0f}; |
|
Vector<float, 4> q1_dot1_check(data_q_dot1_check); |
|
TEST(isEqual(q1_dot1, q1_dot1_check)); |
|
|
|
// quaternion derivative in frame 2 |
|
Vector<float, 4> q1_dot2 = q1.derivative2(Vector3f(1, 2, 3)); |
|
float data_q_dot2_check[] = { -0.5f, 0.0f, 1.5f, -1.0f}; |
|
Vector<float, 4> q1_dot2_check(data_q_dot2_check); |
|
TEST(isEqual(q1_dot2, q1_dot2_check)); |
|
|
|
// quaternion product |
|
Quatf q_prod_check( |
|
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f); |
|
TEST(isEqual(q_prod_check, q_check * q_check)); |
|
q_check *= q_check; |
|
TEST(isEqual(q_prod_check, q_check)); |
|
|
|
// Quaternion scalar multiplication |
|
float scalar = 0.5; |
|
Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f); |
|
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar, |
|
3.0f * scalar, 4.0f * scalar); |
|
Quatf q_scalar_mul_res = scalar * q_scalar_mul; |
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res)); |
|
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar; |
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res2)); |
|
Quatf q_scalar_mul_res3(q_scalar_mul); |
|
q_scalar_mul_res3 *= scalar; |
|
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res3)); |
|
|
|
// quaternion inverse |
|
q = q_check.inversed(); |
|
TEST(fabs(q_check(0) - q(0)) < eps); |
|
TEST(fabs(q_check(1) + q(1)) < eps); |
|
TEST(fabs(q_check(2) + q(2)) < eps); |
|
TEST(fabs(q_check(3) + q(3)) < eps); |
|
|
|
q = q_check; |
|
q.invert(); |
|
TEST(fabs(q_check(0) - q(0)) < eps); |
|
TEST(fabs(q_check(1) + q(1)) < eps); |
|
TEST(fabs(q_check(2) + q(2)) < eps); |
|
TEST(fabs(q_check(3) + q(3)) < eps); |
|
|
|
// quaternion canonical |
|
Quatf q_non_canonical(-0.7f,0.4f, 0.3f, -0.3f); |
|
Quatf q_canonical(0.7f,-0.4f, -0.3f, 0.3f); |
|
Quatf q_canonical_ref(0.7f,-0.4f, -0.3f, 0.3f); |
|
TEST(isEqual(q_non_canonical.canonical(),q_canonical_ref)); |
|
TEST(isEqual(q_canonical.canonical(),q_canonical_ref)); |
|
q_non_canonical.canonicalize(); |
|
q_canonical.canonicalize(); |
|
TEST(isEqual(q_non_canonical,q_canonical_ref)); |
|
TEST(isEqual(q_canonical,q_canonical_ref)); |
|
|
|
// quaternion setIdentity |
|
Quatf q_nonIdentity(-0.7f, 0.4f, 0.5f, -0.3f); |
|
Quatf q_identity(1.0f, 0.0f, 0.0f, 0.0f); |
|
q_nonIdentity.setIdentity(); |
|
TEST(isEqual(q_nonIdentity, q_identity)); |
|
|
|
// non-unit quaternion invese |
|
Quatf qI(1.0f, 0.0f, 0.0f, 0.0f); |
|
Quatf q_nonunit(0.1f, 0.2f, 0.3f, 0.4f); |
|
TEST(isEqual(qI, q_nonunit*q_nonunit.inversed())); |
|
|
|
// rotate quaternion (nonzero rotation) |
|
Vector<float, 3> rot; |
|
rot(0) = 1.0f; |
|
rot(1) = rot(2) = 0.0f; |
|
qI.rotate(rot); |
|
Quatf q_true(cos(1.0f / 2), sin(1.0f / 2), 0.0f, 0.0f); |
|
TEST(isEqual(qI, q_true)); |
|
|
|
// rotate quaternion (zero rotation) |
|
qI = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
rot(0) = 0.0f; |
|
rot(1) = rot(2) = 0.0f; |
|
qI.rotate(rot); |
|
q_true = Quatf(cos(0.0f), sin(0.0f), 0.0f, 0.0f); |
|
TEST(isEqual(qI, q_true)); |
|
|
|
// rotate quaternion (random non-commutating rotation) |
|
q = Quatf(AxisAnglef(5.1f, 3.2f, 8.4f)); |
|
rot = Vector3f(1.1f, 2.5f, 3.8f); |
|
q.rotate(rot); |
|
q_true = Quatf(0.3019f, 0.2645f, 0.2268f, 0.8874f); |
|
TEST(isEqual(q, q_true)); |
|
|
|
// get rotation axis from quaternion (nonzero rotation) |
|
q = Quatf(cos(1.0f / 2), 0.0f, sin(1.0f / 2), 0.0f); |
|
rot = q.to_axis_angle(); |
|
TEST(fabs(rot(0)) < eps); |
|
TEST(fabs(rot(1) - 1.0f) < eps); |
|
TEST(fabs(rot(2)) < eps); |
|
|
|
// get rotation axis from quaternion (zero rotation) |
|
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
rot = q.to_axis_angle(); |
|
TEST(fabs(rot(0)) < eps); |
|
TEST(fabs(rot(1)) < eps); |
|
TEST(fabs(rot(2)) < eps); |
|
|
|
// from axis angle (zero rotation) |
|
rot(0) = rot(1) = rot(2) = 0.0f; |
|
q.from_axis_angle(rot, 0.0f); |
|
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f); |
|
TEST(isEqual(q, q_true)); |
|
|
|
// from axis angle, with length of vector the rotation |
|
float n = float(sqrt(4*M_PI*M_PI/3)); |
|
q.from_axis_angle(Vector3f(n, n, n)); |
|
TEST(isEqual(q, Quatf(-1, 0, 0, 0))); |
|
q.from_axis_angle(Vector3f(0, 0, 0)); |
|
TEST(isEqual(q, Quatf(1, 0, 0, 0))); |
|
|
|
// Quaternion initialisation per array |
|
float q_array[] = {0.9833f, -0.0343f, -0.1060f, -0.1436f}; |
|
Quaternion<float>q_from_array(q_array); |
|
|
|
for (size_t i = 0; i < 4; i++) { |
|
TEST(fabs(q_from_array(i) - q_array[i]) < eps); |
|
} |
|
|
|
// axis angle |
|
AxisAnglef aa_true(Vector3f(1.0f, 2.0f, 3.0f)); |
|
TEST(isEqual(aa_true, Vector3f(1.0f, 2.0f, 3.0f))); |
|
AxisAnglef aa_empty; |
|
TEST(isEqual(aa_empty, AxisAnglef(0.0f, 0.0f, 0.0f))); |
|
float aa_data[] = {4.0f, 5.0f, 6.0f}; |
|
AxisAnglef aa_data_init(aa_data); |
|
TEST(isEqual(aa_data_init, AxisAnglef(4.0f, 5.0f, 6.0f))); |
|
|
|
AxisAnglef aa_norm_check(Vector3f(0.0f, 0.0f, 0.0f)); |
|
TEST(isEqual(aa_norm_check.axis(), Vector3f(1, 0, 0))); |
|
TEST(isEqualF(aa_norm_check.angle(), 0.0f)); |
|
|
|
q = Quatf(-0.29555112749297824f, 0.25532186f, 0.51064372f, 0.76596558f); |
|
TEST(isEqual(q.imag(), Vector3f(0.25532186f, 0.51064372f, 0.76596558f))); |
|
|
|
// from dcm |
|
TEST(isEqual(Eulerf(q.from_dcm(Dcmf(q))), Eulerf(q))); |
|
|
|
// to dcm |
|
TEST(isEqual(Dcmf(q), q.to_dcm())); |
|
|
|
// conjugate |
|
v = Vector3f(1.5f, 2.2f, 3.2f); |
|
TEST(isEqual(q.conjugate_inversed(v1), Dcmf(q).T()*v1)); |
|
TEST(isEqual(q.conjugate(v1), Dcmf(q)*v1)); |
|
|
|
AxisAnglef aa_q_init(q); |
|
TEST(isEqual(aa_q_init, AxisAnglef(1.0f, 2.0f, 3.0f))); |
|
|
|
AxisAnglef aa_euler_init(Eulerf(0.0f, 0.0f, 0.0f)); |
|
TEST(isEqual(aa_euler_init, Vector3f(0.0f, 0.0f, 0.0f))); |
|
|
|
Dcmf dcm_aa_check = AxisAnglef(dcm_check); |
|
TEST(isEqual(dcm_aa_check, dcm_check)); |
|
|
|
AxisAnglef aa_axis_angle_init(Vector3f(1.0f, 2.0f, 3.0f), 3.0f); |
|
TEST(isEqual(aa_axis_angle_init, Vector3f(0.80178373f, 1.60356745f, 2.40535118f))); |
|
TEST(isEqual(aa_axis_angle_init.axis(), Vector3f(0.26726124f, 0.53452248f, 0.80178373f))); |
|
TEST(isEqualF(aa_axis_angle_init.angle(), 3.0f)); |
|
TEST(isEqual(Quatf((AxisAnglef(Vector3f(0.0f, 0.0f, 1.0f), 0.0f))), |
|
Quatf(1.0f, 0.0f, 0.0f, 0.0f))); |
|
|
|
|
|
// check consistentcy of quaternion and dcm product |
|
Dcmf dcm3(Eulerf(1, 2, 3)); |
|
Dcmf dcm4(Eulerf(4, 5, 6)); |
|
Dcmf dcm34 = dcm3 * dcm4; |
|
TEST(isEqual(Eulerf(Quatf(dcm3)*Quatf(dcm4)), Eulerf(dcm34))); |
|
|
|
// check corner cases of matrix to quaternion conversion |
|
q = Quatf(0,1,0,0); // 180 degree rotation around the x axis |
|
R = Dcmf(q); |
|
TEST(isEqual(q, Quatf(R))); |
|
q = Quatf(0,0,1,0); // 180 degree rotation around the y axis |
|
R = Dcmf(q); |
|
TEST(isEqual(q, Quatf(R))); |
|
q = Quatf(0,0,0,1); // 180 degree rotation around the z axis |
|
R = Dcmf(q); |
|
TEST(isEqual(q, Quatf(R))); |
|
|
|
#if defined(SUPPORT_STDIOSTREAM) |
|
std::cout << "q:" << q; |
|
#endif |
|
return 0; |
|
} |
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|
|
|