You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

404 lines
13 KiB

#include "test_macros.hpp"
#include <matrix/math.hpp>
#include <iostream>
using namespace matrix;
// manually instantiated all files we intend to test
// so that coverage works correctly
// doesn't matter what test this is in
namespace matrix {
template class Matrix<float, 3, 3>;
template class Vector3<float>;
template class Vector2<float>;
template class Vector<float, 4>;
template class Quaternion<float>;
template class AxisAngle<float>;
template class Scalar<float>;
template class SquareMatrix<float, 4>;
}
int main()
{
// check data
Eulerf euler_check(0.1f, 0.2f, 0.3f);
Quatf q_check(0.98334744f, 0.0342708f, 0.10602051f, .14357218f);
float dcm_data[] = {
0.93629336f, -0.27509585f, 0.21835066f,
0.28962948f, 0.95642509f, -0.03695701f,
-0.19866933f, 0.0978434f, 0.97517033f
};
Dcmf dcm_check(dcm_data);
// euler ctor
TEST(isEqual(euler_check, Vector3f(0.1f, 0.2f, 0.3f)));
// euler default ctor
Eulerf e;
Eulerf e_zero = zeros<float, 3, 1>();
TEST(isEqual(e, e_zero));
TEST(isEqual(e, e));
// euler vector ctor
Vector3f v(0.1f, 0.2f, 0.3f);
Eulerf euler_copy(v);
TEST(isEqual(euler_copy, euler_check));
// quaternion ctor
Quatf q0(1, 2, 3, 4);
Quatf q(q0);
double eps = 1e-6;
TEST(fabs(q(0) - 1) < eps);
TEST(fabs(q(1) - 2) < eps);
TEST(fabs(q(2) - 3) < eps);
TEST(fabs(q(3) - 4) < eps);
// quaternion ctor: vector to vector
// identity test
Quatf quat_v(v,v);
TEST(isEqual(quat_v.conjugate(v), v));
// random test (vector norm can not be preserved with a pure rotation)
Vector3f v1(-80.1f, 1.5f, -6.89f);
quat_v = Quatf(v1, v);
TEST(isEqual(quat_v.conjugate(v1).normalized() * v.norm(), v));
// special 180 degree case 1
v1 = Vector3f(0.f, 1.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 2
v1 = Vector3f(1.f, 2.f, 0.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 3
v1 = Vector3f(0.f, 0.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// special 180 degree case 4
v1 = Vector3f(1.f, 1.f, 1.f);
quat_v = Quatf(v1, -v1);
TEST(isEqual(quat_v.conjugate(v1), -v1));
// quat normalization
q.normalize();
TEST(isEqual(q, Quatf(0.18257419f, 0.36514837f,
0.54772256f, 0.73029674f)));
TEST(isEqual(q0.unit(), q));
TEST(isEqual(q0.unit(), q0.normalized()));
// quat default ctor
q = Quatf();
TEST(isEqual(q, Quatf(1, 0, 0, 0)));
// euler to quaternion
q = Quatf(euler_check);
TEST(isEqual(q, q_check));
// euler to dcm
Dcmf dcm(euler_check);
TEST(isEqual(dcm, dcm_check));
// quaternion to euler
Eulerf e1(q_check);
TEST(isEqual(e1, euler_check));
// quaternion to dcm
Dcmf dcm1(q_check);
TEST(isEqual(dcm1, dcm_check));
// quaternion z-axis unit base vector
Vector3f q_z = q_check.dcm_z();
Vector3f R_z(dcm_check(0, 2), dcm_check(1, 2), dcm_check(2, 2));
TEST(isEqual(q_z, R_z));
// dcm default ctor
Dcmf dcm2;
SquareMatrix<float, 3> I = eye<float, 3>();
TEST(isEqual(dcm2, I));
// dcm to euler
Eulerf e2(dcm_check);
TEST(isEqual(e2, euler_check));
// dcm to quaterion
Quatf q2(dcm_check);
TEST(isEqual(q2, q_check));
// dcm renormalize
Dcmf A = eye<float, 3>();
Dcmf R(euler_check);
for (size_t i = 0; i < 1000; i++) {
A = R * A;
}
A.renormalize();
float err = 0.0f;
for (size_t r = 0; r < 3; r++) {
Vector3f rvec(matrix::Matrix<float,1,3>(A.row(r)).transpose());
err += fabs(1.0f - rvec.length());
}
TEST(err < eps);
// constants
double deg2rad = M_PI / 180.0;
double rad2deg = 180.0 / M_PI;
// euler dcm round trip check
for (double roll = -90; roll <= 90; roll += 90) {
for (double pitch = -90; pitch <= 90; pitch += 90) {
for (double yaw = -179; yaw <= 180; yaw += 90) {
// note if theta = pi/2, then roll is set to zero
double roll_expected = roll;
double yaw_expected = yaw;
if (fabs(pitch -90) < eps) {
roll_expected = 0;
yaw_expected = yaw - roll;
} else if (fabs(pitch + 90) < eps) {
roll_expected = 0;
yaw_expected = yaw + roll;
}
if (yaw_expected < -180) {
yaw_expected += 360;
}
if (yaw_expected > 180) {
yaw_expected -= 360;
}
//printf("roll:%d pitch:%d yaw:%d\n", roll, pitch, yaw);
Euler<double> euler_expected(
deg2rad * roll_expected,
deg2rad * pitch,
deg2rad * yaw_expected);
Euler<double> euler(
deg2rad * roll,
deg2rad * pitch,
deg2rad * yaw);
Dcm<double> dcm_from_euler(euler);
//dcm_from_euler.print();
Euler<double> euler_out(dcm_from_euler);
TEST(isEqual(rad2deg * euler_expected, rad2deg * euler_out));
Eulerf eulerf_expected(
float(deg2rad)*float(roll_expected),
float(deg2rad)*float(pitch),
float(deg2rad)*float(yaw_expected));
Eulerf eulerf(float(deg2rad)*float(roll),
float(deg2rad)*float(pitch),
float(deg2rad)*float(yaw));
Dcm<float> dcm_from_eulerf;
dcm_from_eulerf = eulerf;
Euler<float> euler_outf(dcm_from_eulerf);
TEST(isEqual(float(rad2deg)*eulerf_expected,
float(rad2deg)*euler_outf));
}
}
}
// quaterion copy ctors
float data_v4[] = {1, 2, 3, 4};
Vector<float, 4> v4(data_v4);
Quatf q_from_v(v4);
TEST(isEqual(q_from_v, v4));
Matrix<float, 4, 1> m4(data_v4);
Quatf q_from_m(m4);
TEST(isEqual(q_from_m, m4));
// quaternion derivative in frame 1
Quatf q1(0, 1, 0, 0);
Vector<float, 4> q1_dot1 = q1.derivative1(Vector3f(1, 2, 3));
float data_q_dot1_check[] = { -0.5f, 0.0f, -1.5f, 1.0f};
Vector<float, 4> q1_dot1_check(data_q_dot1_check);
TEST(isEqual(q1_dot1, q1_dot1_check));
// quaternion derivative in frame 2
Vector<float, 4> q1_dot2 = q1.derivative2(Vector3f(1, 2, 3));
float data_q_dot2_check[] = { -0.5f, 0.0f, 1.5f, -1.0f};
Vector<float, 4> q1_dot2_check(data_q_dot2_check);
TEST(isEqual(q1_dot2, q1_dot2_check));
// quaternion product
Quatf q_prod_check(
0.93394439f, 0.0674002f, 0.20851f, 0.28236266f);
TEST(isEqual(q_prod_check, q_check * q_check));
q_check *= q_check;
TEST(isEqual(q_prod_check, q_check));
// Quaternion scalar multiplication
float scalar = 0.5;
Quatf q_scalar_mul(1.0f, 2.0f, 3.0f, 4.0f);
Quatf q_scalar_mul_check(1.0f * scalar, 2.0f * scalar,
3.0f * scalar, 4.0f * scalar);
Quatf q_scalar_mul_res = scalar * q_scalar_mul;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res));
Quatf q_scalar_mul_res2 = q_scalar_mul * scalar;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res2));
Quatf q_scalar_mul_res3(q_scalar_mul);
q_scalar_mul_res3 *= scalar;
TEST(isEqual(q_scalar_mul_check, q_scalar_mul_res3));
// quaternion inverse
q = q_check.inversed();
TEST(fabs(q_check(0) - q(0)) < eps);
TEST(fabs(q_check(1) + q(1)) < eps);
TEST(fabs(q_check(2) + q(2)) < eps);
TEST(fabs(q_check(3) + q(3)) < eps);
q = q_check;
q.invert();
TEST(fabs(q_check(0) - q(0)) < eps);
TEST(fabs(q_check(1) + q(1)) < eps);
TEST(fabs(q_check(2) + q(2)) < eps);
TEST(fabs(q_check(3) + q(3)) < eps);
// quaternion canonical
Quatf q_non_canonical(-0.7f,0.4f, 0.3f, -0.3f);
Quatf q_canonical(0.7f,-0.4f, -0.3f, 0.3f);
Quatf q_canonical_ref(0.7f,-0.4f, -0.3f, 0.3f);
TEST(isEqual(q_non_canonical.canonical(),q_canonical_ref));
TEST(isEqual(q_canonical.canonical(),q_canonical_ref));
q_non_canonical.canonicalize();
q_canonical.canonicalize();
TEST(isEqual(q_non_canonical,q_canonical_ref));
TEST(isEqual(q_canonical,q_canonical_ref));
// quaternion setIdentity
Quatf q_nonIdentity(-0.7f, 0.4f, 0.5f, -0.3f);
Quatf q_identity(1.0f, 0.0f, 0.0f, 0.0f);
q_nonIdentity.setIdentity();
TEST(isEqual(q_nonIdentity, q_identity));
// non-unit quaternion invese
Quatf qI(1.0f, 0.0f, 0.0f, 0.0f);
Quatf q_nonunit(0.1f, 0.2f, 0.3f, 0.4f);
TEST(isEqual(qI, q_nonunit*q_nonunit.inversed()));
// rotate quaternion (nonzero rotation)
Vector<float, 3> rot;
rot(0) = 1.0f;
rot(1) = rot(2) = 0.0f;
qI.rotate(rot);
Quatf q_true(cos(1.0f / 2), sin(1.0f / 2), 0.0f, 0.0f);
TEST(isEqual(qI, q_true));
// rotate quaternion (zero rotation)
qI = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
rot(0) = 0.0f;
rot(1) = rot(2) = 0.0f;
qI.rotate(rot);
q_true = Quatf(cos(0.0f), sin(0.0f), 0.0f, 0.0f);
TEST(isEqual(qI, q_true));
// rotate quaternion (random non-commutating rotation)
q = Quatf(AxisAnglef(5.1f, 3.2f, 8.4f));
rot = Vector3f(1.1f, 2.5f, 3.8f);
q.rotate(rot);
q_true = Quatf(0.3019f, 0.2645f, 0.2268f, 0.8874f);
TEST(isEqual(q, q_true));
// get rotation axis from quaternion (nonzero rotation)
q = Quatf(cos(1.0f / 2), 0.0f, sin(1.0f / 2), 0.0f);
rot = q.to_axis_angle();
TEST(fabs(rot(0)) < eps);
TEST(fabs(rot(1) - 1.0f) < eps);
TEST(fabs(rot(2)) < eps);
// get rotation axis from quaternion (zero rotation)
q = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
rot = q.to_axis_angle();
TEST(fabs(rot(0)) < eps);
TEST(fabs(rot(1)) < eps);
TEST(fabs(rot(2)) < eps);
// from axis angle (zero rotation)
rot(0) = rot(1) = rot(2) = 0.0f;
q.from_axis_angle(rot, 0.0f);
q_true = Quatf(1.0f, 0.0f, 0.0f, 0.0f);
TEST(isEqual(q, q_true));
// from axis angle, with length of vector the rotation
float n = float(sqrt(4*M_PI*M_PI/3));
q.from_axis_angle(Vector3f(n, n, n));
TEST(isEqual(q, Quatf(-1, 0, 0, 0)));
q.from_axis_angle(Vector3f(0, 0, 0));
TEST(isEqual(q, Quatf(1, 0, 0, 0)));
// Quaternion initialisation per array
float q_array[] = {0.9833f, -0.0343f, -0.1060f, -0.1436f};
Quaternion<float>q_from_array(q_array);
for (size_t i = 0; i < 4; i++) {
TEST(fabs(q_from_array(i) - q_array[i]) < eps);
}
// axis angle
AxisAnglef aa_true(Vector3f(1.0f, 2.0f, 3.0f));
TEST(isEqual(aa_true, Vector3f(1.0f, 2.0f, 3.0f)));
AxisAnglef aa_empty;
TEST(isEqual(aa_empty, AxisAnglef(0.0f, 0.0f, 0.0f)));
float aa_data[] = {4.0f, 5.0f, 6.0f};
AxisAnglef aa_data_init(aa_data);
TEST(isEqual(aa_data_init, AxisAnglef(4.0f, 5.0f, 6.0f)));
AxisAnglef aa_norm_check(Vector3f(0.0f, 0.0f, 0.0f));
TEST(isEqual(aa_norm_check.axis(), Vector3f(1, 0, 0)));
TEST(isEqualF(aa_norm_check.angle(), 0.0f));
q = Quatf(-0.29555112749297824f, 0.25532186f, 0.51064372f, 0.76596558f);
TEST(isEqual(q.imag(), Vector3f(0.25532186f, 0.51064372f, 0.76596558f)));
// from dcm
TEST(isEqual(Eulerf(q.from_dcm(Dcmf(q))), Eulerf(q)));
// to dcm
TEST(isEqual(Dcmf(q), q.to_dcm()));
// conjugate
v = Vector3f(1.5f, 2.2f, 3.2f);
TEST(isEqual(q.conjugate_inversed(v1), Dcmf(q).T()*v1));
TEST(isEqual(q.conjugate(v1), Dcmf(q)*v1));
AxisAnglef aa_q_init(q);
TEST(isEqual(aa_q_init, AxisAnglef(1.0f, 2.0f, 3.0f)));
AxisAnglef aa_euler_init(Eulerf(0.0f, 0.0f, 0.0f));
TEST(isEqual(aa_euler_init, Vector3f(0.0f, 0.0f, 0.0f)));
Dcmf dcm_aa_check = AxisAnglef(dcm_check);
TEST(isEqual(dcm_aa_check, dcm_check));
AxisAnglef aa_axis_angle_init(Vector3f(1.0f, 2.0f, 3.0f), 3.0f);
TEST(isEqual(aa_axis_angle_init, Vector3f(0.80178373f, 1.60356745f, 2.40535118f)));
TEST(isEqual(aa_axis_angle_init.axis(), Vector3f(0.26726124f, 0.53452248f, 0.80178373f)));
TEST(isEqualF(aa_axis_angle_init.angle(), 3.0f));
TEST(isEqual(Quatf((AxisAnglef(Vector3f(0.0f, 0.0f, 1.0f), 0.0f))),
Quatf(1.0f, 0.0f, 0.0f, 0.0f)));
// check consistentcy of quaternion and dcm product
Dcmf dcm3(Eulerf(1, 2, 3));
Dcmf dcm4(Eulerf(4, 5, 6));
Dcmf dcm34 = dcm3 * dcm4;
TEST(isEqual(Eulerf(Quatf(dcm3)*Quatf(dcm4)), Eulerf(dcm34)));
// check corner cases of matrix to quaternion conversion
q = Quatf(0,1,0,0); // 180 degree rotation around the x axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
q = Quatf(0,0,1,0); // 180 degree rotation around the y axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
q = Quatf(0,0,0,1); // 180 degree rotation around the z axis
R = Dcmf(q);
TEST(isEqual(q, Quatf(R)));
#if defined(SUPPORT_STDIOSTREAM)
std::cout << "q:" << q;
#endif
return 0;
}
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */