You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
8.6 KiB
224 lines
8.6 KiB
% This Matlab Script can be used to import the binary logged values of the |
|
% PX4FMU into data that can be plotted and analyzed. |
|
|
|
% Clear everything |
|
clc |
|
clear all |
|
close all |
|
|
|
% Set the path to your sysvector.bin file here |
|
filePath = 'sysvector.bin'; |
|
|
|
% Work around a Matlab bug (not related to PX4) |
|
% where timestamps from 1.1.1970 do not allow to |
|
% read the file's size |
|
if ismac |
|
system('touch -t 201212121212.12 sysvector.bin'); |
|
end |
|
|
|
%%%%%%%%%%%%%%%%%%%%%%% |
|
% SYSTEM VECTOR |
|
% |
|
% //All measurements in NED frame |
|
% |
|
% uint64_t timestamp; //[us] |
|
% float gyro[3]; //[rad/s] |
|
% float accel[3]; //[m/s^2] |
|
% float mag[3]; //[gauss] |
|
% float baro; //pressure [millibar] |
|
% float baro_alt; //altitude above MSL [meter] |
|
% float baro_temp; //[degree celcius] |
|
% float control[4]; //roll, pitch, yaw [-1..1], thrust [0..1] |
|
% float actuators[8]; //motor 1-8, in motor units (PWM: 1000-2000,AR.Drone: 0-512) |
|
% float vbat; //battery voltage in [volt] |
|
% float bat_current - current drawn from battery at this time instant |
|
% float bat_discharged - discharged energy in mAh |
|
% float adc[4]; //ADC ports [volt] |
|
% float local_position[3]; //tangent plane mapping into x,y,z [m] |
|
% int32_t gps_raw_position[3]; //latitude [degrees] north, longitude [degrees] east, altitude above MSL [millimeter] |
|
% float attitude[3]; //pitch, roll, yaw [rad] |
|
% float rotMatrix[9]; //unitvectors |
|
% float actuator_control[4]; //unitvector |
|
% float optical_flow[4]; //roll, pitch, yaw [-1..1], thrust [0..1] |
|
% float diff_pressure; - pressure difference in millibar |
|
% float ind_airspeed; |
|
% float true_airspeed; |
|
|
|
% Definition of the logged values |
|
logFormat{1} = struct('name', 'timestamp', 'bytes', 8, 'array', 1, 'precision', 'uint64', 'machineformat', 'ieee-le.l64'); |
|
logFormat{2} = struct('name', 'gyro', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{3} = struct('name', 'accel', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{4} = struct('name', 'mag', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{5} = struct('name', 'baro', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{6} = struct('name', 'baro_alt', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{7} = struct('name', 'baro_temp', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{8} = struct('name', 'control', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{9} = struct('name', 'actuators', 'bytes', 4, 'array', 8, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{10} = struct('name', 'vbat', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{11} = struct('name', 'bat_current', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{12} = struct('name', 'bat_discharged', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{13} = struct('name', 'adc', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{14} = struct('name', 'local_position', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{15} = struct('name', 'gps_raw_position', 'bytes', 4, 'array', 3, 'precision', 'uint32', 'machineformat', 'ieee-le'); |
|
logFormat{16} = struct('name', 'attitude', 'bytes', 4, 'array', 3, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{17} = struct('name', 'rot_matrix', 'bytes', 4, 'array', 9, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{18} = struct('name', 'vicon_position', 'bytes', 4, 'array', 6, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{19} = struct('name', 'actuator_control', 'bytes', 4, 'array', 4, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{20} = struct('name', 'optical_flow', 'bytes', 4, 'array', 6, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{21} = struct('name', 'diff_pressure', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{22} = struct('name', 'ind_airspeed', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
logFormat{23} = struct('name', 'true_airspeed', 'bytes', 4, 'array', 1, 'precision', 'float', 'machineformat', 'ieee-le'); |
|
|
|
% First get length of one line |
|
columns = length(logFormat); |
|
lineLength = 0; |
|
|
|
for i=1:columns |
|
lineLength = lineLength + logFormat{i}.bytes * logFormat{i}.array; |
|
end |
|
|
|
|
|
if exist(filePath, 'file') |
|
|
|
fileInfo = dir(filePath); |
|
fileSize = fileInfo.bytes; |
|
|
|
elements = int64(fileSize./(lineLength)); |
|
|
|
fid = fopen(filePath, 'r'); |
|
offset = 0; |
|
for i=1:columns |
|
% using fread with a skip speeds up the import drastically, do not |
|
% import the values one after the other |
|
sysvector.(genvarname(logFormat{i}.name)) = transpose(fread(... |
|
fid, ... |
|
[logFormat{i}.array, elements], [num2str(logFormat{i}.array),'*',logFormat{i}.precision,'=>',logFormat{i}.precision], ... |
|
lineLength - logFormat{i}.bytes*logFormat{i}.array, ... |
|
logFormat{i}.machineformat) ... |
|
); |
|
offset = offset + logFormat{i}.bytes*logFormat{i}.array; |
|
fseek(fid, offset,'bof'); |
|
end |
|
|
|
% shot the flight time |
|
time_us = sysvector.timestamp(end) - sysvector.timestamp(1); |
|
time_s = time_us*1e-6; |
|
time_m = time_s/60; |
|
|
|
% close the logfile |
|
fclose(fid); |
|
|
|
disp(['end log2matlab conversion' char(10)]); |
|
else |
|
disp(['file: ' filePath ' does not exist' char(10)]); |
|
end |
|
|
|
%% Plot GPS RAW measurements |
|
|
|
% Only plot GPS data if available |
|
if cumsum(double(sysvector.gps_raw_position(200:end,1))) > 0 |
|
figure('units','normalized','outerposition',[0 0 1 1]) |
|
plot3(sysvector.gps_raw_position(200:end,1), sysvector.gps_raw_position(200:end,2), sysvector.gps_raw_position(200:end,3)); |
|
end |
|
|
|
|
|
%% Plot optical flow trajectory |
|
|
|
flow_sz = size(sysvector.timestamp); |
|
flow_elements = flow_sz(1); |
|
|
|
xt(1:flow_elements,1) = sysvector.timestamp(:,1); % time column [ms] |
|
|
|
|
|
%calc dt |
|
dt = zeros(flow_elements,1); |
|
for i = 1:flow_elements-1 |
|
dt(i+1,1) = double(xt(i+1,1)-xt(i,1)) * 10^(-6); % timestep [s] |
|
end |
|
dt(1,1) = mean(dt); |
|
|
|
|
|
global_speed = zeros(flow_elements,3); |
|
|
|
%calc global speed (with rot matrix) |
|
for i = 1:flow_elements |
|
rotM = [sysvector.rot_matrix(i,1:3);sysvector.rot_matrix(i,4:6);sysvector.rot_matrix(i,7:9)]'; |
|
speedX = sysvector.optical_flow(i,3); |
|
speedY = sysvector.optical_flow(i,4); |
|
|
|
relSpeed = [-speedY,speedX,0]; |
|
global_speed(i,:) = relSpeed * rotM; |
|
end |
|
|
|
|
|
|
|
px = zeros(flow_elements,1); |
|
py = zeros(flow_elements,1); |
|
distance = 0; |
|
|
|
last_vx = 0; |
|
last_vy = 0; |
|
elem_cnt = 0; |
|
|
|
% Very basic accumulation, stops on bad flow quality |
|
for i = 1:flow_elements |
|
if sysvector.optical_flow(i,6) > 5 |
|
px(i,1) = global_speed(i,1)*dt(i,1); |
|
py(i,1) = global_speed(i,2)*dt(i,1); |
|
distance = distance + norm([px(i,1) py(i,1)]); |
|
last_vx = px(i,1); |
|
last_vy = py(i,1); |
|
else |
|
px(i,1) = last_vx; |
|
py(i,1) = last_vy; |
|
last_vx = last_vx*0.95; |
|
last_vy = last_vy*0.95; |
|
end |
|
end |
|
|
|
px_sum = cumsum(px); |
|
py_sum = cumsum(py); |
|
time = cumsum(dt); |
|
|
|
figure() |
|
set(gca, 'Units','normal'); |
|
|
|
plot(py_sum, px_sum, '-blue', 'LineWidth',2); |
|
axis equal; |
|
% set title and axis captions |
|
xlabel('X position (meters)','fontsize',14) |
|
ylabel('Y position (meters)','fontsize',14) |
|
% mark begin and end |
|
hold on |
|
plot(py_sum(1,1),px_sum(1,1),'ks','LineWidth',2,... |
|
'MarkerEdgeColor','k',... |
|
'MarkerFaceColor','g',... |
|
'MarkerSize',10) |
|
hold on |
|
plot(py_sum(end,1),px_sum(end,1),'kv','LineWidth',2,... |
|
'MarkerEdgeColor','k',... |
|
'MarkerFaceColor','b',... |
|
'MarkerSize',10) |
|
% add total length as annotation |
|
set(gca,'fontsize',13); |
|
legend('Trajectory', 'START', sprintf('END\n(%.2f m, %.0f:%.0f s)', distance, time_m, time_s - time_m*60)); |
|
title('Optical Flow Position Integration', 'fontsize', 15); |
|
|
|
figure() |
|
plot(time, sysvector.optical_flow(:,5), 'blue'); |
|
axis([time(1,1) time(end,1) 0 (max(sysvector.optical_flow(i,5))+0.2)]); |
|
xlabel('seconds','fontsize',14); |
|
ylabel('m','fontsize',14); |
|
set(gca,'fontsize',13); |
|
title('Ultrasound Altitude', 'fontsize', 15); |
|
|
|
|
|
figure() |
|
plot(time, global_speed(:,2), 'red'); |
|
hold on; |
|
plot(time, global_speed(:,1), 'blue'); |
|
legend('y velocity (m/s)', 'x velocity (m/s)'); |
|
xlabel('seconds','fontsize',14); |
|
ylabel('m/s','fontsize',14); |
|
set(gca,'fontsize',13); |
|
title('Optical Flow Velocity', 'fontsize', 15);
|
|
|