You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

127 lines
2.9 KiB

from __future__ import print_function
from pylab import *
from pprint import pprint
import scipy.linalg
# test cases, derived from doc/nasa_rotation_def.pdf
#pylint: disable=all
def euler_to_quat(phi, theta, psi):
"Quaternion from (body 3(psi)-2(theta)-1(phi) euler angles"
s1 = sin(psi/2)
c1 = cos(psi/2)
s2 = sin(theta/2)
c2 = cos(theta/2)
s3 = sin(phi/2)
c3 = cos(phi/2)
return array([
s1*s2*s3 + c1*c2*c3,
-s1*s2*c3 + s3*c1*c2,
s1*s3*c2 + s2*c1*c3,
s1*c2*c3 - s2*s3*c1
])
def euler_to_dcm(phi, theta, psi):
s1 = sin(psi)
c1 = cos(psi)
s2 = sin(theta)
c2 = cos(theta)
s3 = sin(phi)
c3 = cos(phi)
return array([
[c1*c2, c1*s2*s3 - s1*c3, c1*s2*c3 + s1*s3],
[s1*c2, s1*s2*s3 + c1*c3, s1*s2*c3 - c1*s3],
[-s2, c2*s3, c2*c3],
])
def quat_prod(q, r):
"Quaternion product"
return array([
r[0]*q[0] - r[1]*q[1] - r[2]*q[2] - r[3]*q[3],
r[0]*q[1] + r[1]*q[0] - r[2]*q[3] + r[3]*q[2],
r[0]*q[2] + r[1]*q[3] + r[2]*q[0] - r[3]*q[1],
r[0]*q[3] - r[1]*q[2] + r[2]*q[1] + r[3]*q[0]
])
def dcm_to_euler(dcm):
return array([
arctan(dcm[2,1]/ dcm[2,2]),
arctan(-dcm[2,0]/ sqrt(1 - dcm[2,0]**2)),
arctan(dcm[1,0]/ dcm[0,0]),
])
def dcm_from_quat(q):
q1 = q[0]
q2 = q[1]
q3 = q[2]
q4 = q[3]
return array([
[q1*q1 + q2*q2 - q3*q3 - q4*q4, 2*(q2*q3 - q1*q4), 2*(q2*q4 + q1*q3)],
[2*(q2*q3 + q1*q4), q1*q1 - q2*q2 + q3*q3 - q4*q4, 2*(q3*q4 - q1*q2)],
[2*(q2*q4 - q1*q3), 2*(q3*q4 + q1*q2), q1*q1 - q2*q2 - q3*q3 + q4*q4]
])
def quat_to_euler(q):
"Quaternion to (body 3(psi)-2(theta)-1(phi) euler angles"
return dcm_to_euler(dcm_from_quat(q))
def quat_to_dcm(q):
return euler_to_dcm(quat_to_euler(q))
phi = 0.1
theta = 0.2
psi = 0.3
print('euler', phi, theta, psi)
q = euler_to_quat(phi, theta, psi)
assert(abs(norm(q) - 1) < 1e-10)
assert(abs(norm(q) - 1) < 1e-10)
assert(norm(array(quat_to_euler(q)) - array([phi, theta, psi])) < 1e-10)
print('\nq:')
pprint(q)
dcm = euler_to_dcm(phi, theta, psi)
assert(norm(dcm[:,0]) == 1)
assert(norm(dcm[:,1]) == 1)
assert(norm(dcm[:,2]) == 1)
assert(abs(dcm[:,0].dot(dcm[:,1])) < 1e-10)
assert(abs(dcm[:,0].dot(dcm[:,2])) < 1e-10)
print('\ndcm:')
pprint(dcm)
print('\nq*q', quat_prod(q, q))
q2 = quat_prod(q, q)
pprint(q2)
print(norm(q2))
print('\nq3:')
q3 = array([1,2,3,4])
pprint(q3)
print('\nq3_norm:')
q3_norm =q3 / norm(q3)
pprint(q3_norm)
print('\ninverse')
A = array([[0,2,3], [4,5,6], [7,8,10]])
pprint(A)
pprint(inv(A))
print('\nmatrix exponential')
A = 0.01*array([[1.0,2.0,3.0], [4.0,5.0,6.0], [7.0,8.0,10.0]])
eA_check = scipy.linalg.expm(A)
pprint(eA_check)
eA_approx = eye(3)
k = 1.0
A_pow = A
for i in range(1,3):
k *= i
# print(i, k, '\n', A_pow/k, '\n')
eA_approx += A_pow/k
A_pow = A_pow.dot(A)
print(eA_approx)
# vim: set et ft=python fenc=utf-8 ff=unix sts=4 sw=4 ts=8 :