You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

264 lines
12 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file airspeed_fusion.cpp
* airspeed fusion methods.
*
* @author Carl Olsson <carlolsson.co@gmail.com>
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*
*/
#include "../ecl.h"
#include "ekf.h"
#include <mathlib/mathlib.h>
void Ekf::fuseAirspeed()
{
float SH_TAS[3] = {}; // Variable used to optimise calculations of measurement jacobian
float H_TAS[24] = {}; // Observation Jacobian
float SK_TAS[2] = {}; // Variable used to optimise calculations of the Kalman gain vector
float Kfusion[24] = {}; // Kalman gain vector
const float vn = _state.vel(0); // Velocity in north direction
const float ve = _state.vel(1); // Velocity in east direction
const float vd = _state.vel(2); // Velocity in downwards direction
const float vwn = _state.wind_vel(0); // Wind speed in north direction
const float vwe = _state.wind_vel(1); // Wind speed in east direction
// Calculate the predicted airspeed
const float v_tas_pred = sqrtf((ve - vwe) * (ve - vwe) + (vn - vwn) * (vn - vwn) + vd * vd);
// Variance for true airspeed measurement - (m/sec)^2
const float R_TAS = sq(math::constrain(_params.eas_noise, 0.5f, 5.0f) *
math::constrain(_airspeed_sample_delayed.eas2tas, 0.9f, 10.0f));
// Perform fusion of True Airspeed measurement
if (v_tas_pred > 1.0f) {
// determine if we need the sideslip fusion to correct states other than wind
const bool update_wind_only = !_is_wind_dead_reckoning;
// Calculate the observation jacobian
// intermediate variable from algebraic optimisation
SH_TAS[0] = 1.0f/v_tas_pred;
SH_TAS[1] = (SH_TAS[0]*(2.0f*ve - 2.0f*vwe))*0.5f;
SH_TAS[2] = (SH_TAS[0]*(2.0f*vn - 2.0f*vwn))*0.5f;
for (uint8_t i = 0; i < _k_num_states; i++) { H_TAS[i] = 0.0f; }
H_TAS[4] = SH_TAS[2];
H_TAS[5] = SH_TAS[1];
H_TAS[6] = vd*SH_TAS[0];
H_TAS[22] = -SH_TAS[2];
H_TAS[23] = -SH_TAS[1];
// We don't want to update the innovation variance if the calculation is ill conditioned
const float _airspeed_innov_var_temp = (R_TAS + SH_TAS[2]*(P(4,4)*SH_TAS[2] + P(5,4)*SH_TAS[1] - P(22,4)*SH_TAS[2] - P(23,4)*SH_TAS[1] + P(6,4)*vd*SH_TAS[0]) + SH_TAS[1]*(P(4,5)*SH_TAS[2] + P(5,5)*SH_TAS[1] - P(22,5)*SH_TAS[2] - P(23,5)*SH_TAS[1] + P(6,5)*vd*SH_TAS[0]) - SH_TAS[2]*(P(4,22)*SH_TAS[2] + P(5,22)*SH_TAS[1] - P(22,22)*SH_TAS[2] - P(23,22)*SH_TAS[1] + P(6,22)*vd*SH_TAS[0]) - SH_TAS[1]*(P(4,23)*SH_TAS[2] + P(5,23)*SH_TAS[1] - P(22,23)*SH_TAS[2] - P(23,23)*SH_TAS[1] + P(6,23)*vd*SH_TAS[0]) + vd*SH_TAS[0]*(P(4,6)*SH_TAS[2] + P(5,6)*SH_TAS[1] - P(22,6)*SH_TAS[2] - P(23,6)*SH_TAS[1] + P(6,6)*vd*SH_TAS[0]));
if (_airspeed_innov_var_temp >= R_TAS) { // Check for badly conditioned calculation
SK_TAS[0] = 1.0f / _airspeed_innov_var_temp;
_fault_status.flags.bad_airspeed = false;
} else { // Reset the estimator covariance matrix
_fault_status.flags.bad_airspeed = true;
// if we are getting aiding from other sources, warn and reset the wind states and covariances only
if (update_wind_only) {
resetWindStates();
resetWindCovariance();
ECL_ERR_TIMESTAMPED("airspeed fusion badly conditioned - wind covariance reset");
} else {
initialiseCovariance();
_state.wind_vel.setZero();
ECL_ERR_TIMESTAMPED("airspeed fusion badly conditioned - full covariance reset");
}
return;
}
SK_TAS[1] = SH_TAS[1];
if (update_wind_only) {
// If we are getting aiding from other sources, then don't allow the airspeed measurements to affect the non-windspeed states
for (unsigned row = 0; row <= 21; row++) {
Kfusion[row] = 0.0f;
}
} else {
// we have no other source of aiding, so use airspeed measurements to correct states
Kfusion[0] = SK_TAS[0]*(P(0,4)*SH_TAS[2] - P(0,22)*SH_TAS[2] + P(0,5)*SK_TAS[1] - P(0,23)*SK_TAS[1] + P(0,6)*vd*SH_TAS[0]);
Kfusion[1] = SK_TAS[0]*(P(1,4)*SH_TAS[2] - P(1,22)*SH_TAS[2] + P(1,5)*SK_TAS[1] - P(1,23)*SK_TAS[1] + P(1,6)*vd*SH_TAS[0]);
Kfusion[2] = SK_TAS[0]*(P(2,4)*SH_TAS[2] - P(2,22)*SH_TAS[2] + P(2,5)*SK_TAS[1] - P(2,23)*SK_TAS[1] + P(2,6)*vd*SH_TAS[0]);
Kfusion[3] = SK_TAS[0]*(P(3,4)*SH_TAS[2] - P(3,22)*SH_TAS[2] + P(3,5)*SK_TAS[1] - P(3,23)*SK_TAS[1] + P(3,6)*vd*SH_TAS[0]);
Kfusion[4] = SK_TAS[0]*(P(4,4)*SH_TAS[2] - P(4,22)*SH_TAS[2] + P(4,5)*SK_TAS[1] - P(4,23)*SK_TAS[1] + P(4,6)*vd*SH_TAS[0]);
Kfusion[5] = SK_TAS[0]*(P(5,4)*SH_TAS[2] - P(5,22)*SH_TAS[2] + P(5,5)*SK_TAS[1] - P(5,23)*SK_TAS[1] + P(5,6)*vd*SH_TAS[0]);
Kfusion[6] = SK_TAS[0]*(P(6,4)*SH_TAS[2] - P(6,22)*SH_TAS[2] + P(6,5)*SK_TAS[1] - P(6,23)*SK_TAS[1] + P(6,6)*vd*SH_TAS[0]);
Kfusion[7] = SK_TAS[0]*(P(7,4)*SH_TAS[2] - P(7,22)*SH_TAS[2] + P(7,5)*SK_TAS[1] - P(7,23)*SK_TAS[1] + P(7,6)*vd*SH_TAS[0]);
Kfusion[8] = SK_TAS[0]*(P(8,4)*SH_TAS[2] - P(8,22)*SH_TAS[2] + P(8,5)*SK_TAS[1] - P(8,23)*SK_TAS[1] + P(8,6)*vd*SH_TAS[0]);
Kfusion[9] = SK_TAS[0]*(P(9,4)*SH_TAS[2] - P(9,22)*SH_TAS[2] + P(9,5)*SK_TAS[1] - P(9,23)*SK_TAS[1] + P(9,6)*vd*SH_TAS[0]);
Kfusion[10] = SK_TAS[0]*(P(10,4)*SH_TAS[2] - P(10,22)*SH_TAS[2] + P(10,5)*SK_TAS[1] - P(10,23)*SK_TAS[1] + P(10,6)*vd*SH_TAS[0]);
Kfusion[11] = SK_TAS[0]*(P(11,4)*SH_TAS[2] - P(11,22)*SH_TAS[2] + P(11,5)*SK_TAS[1] - P(11,23)*SK_TAS[1] + P(11,6)*vd*SH_TAS[0]);
Kfusion[12] = SK_TAS[0]*(P(12,4)*SH_TAS[2] - P(12,22)*SH_TAS[2] + P(12,5)*SK_TAS[1] - P(12,23)*SK_TAS[1] + P(12,6)*vd*SH_TAS[0]);
Kfusion[13] = SK_TAS[0]*(P(13,4)*SH_TAS[2] - P(13,22)*SH_TAS[2] + P(13,5)*SK_TAS[1] - P(13,23)*SK_TAS[1] + P(13,6)*vd*SH_TAS[0]);
Kfusion[14] = SK_TAS[0]*(P(14,4)*SH_TAS[2] - P(14,22)*SH_TAS[2] + P(14,5)*SK_TAS[1] - P(14,23)*SK_TAS[1] + P(14,6)*vd*SH_TAS[0]);
Kfusion[15] = SK_TAS[0]*(P(15,4)*SH_TAS[2] - P(15,22)*SH_TAS[2] + P(15,5)*SK_TAS[1] - P(15,23)*SK_TAS[1] + P(15,6)*vd*SH_TAS[0]);
Kfusion[16] = SK_TAS[0]*(P(16,4)*SH_TAS[2] - P(16,22)*SH_TAS[2] + P(16,5)*SK_TAS[1] - P(16,23)*SK_TAS[1] + P(16,6)*vd*SH_TAS[0]);
Kfusion[17] = SK_TAS[0]*(P(17,4)*SH_TAS[2] - P(17,22)*SH_TAS[2] + P(17,5)*SK_TAS[1] - P(17,23)*SK_TAS[1] + P(17,6)*vd*SH_TAS[0]);
Kfusion[18] = SK_TAS[0]*(P(18,4)*SH_TAS[2] - P(18,22)*SH_TAS[2] + P(18,5)*SK_TAS[1] - P(18,23)*SK_TAS[1] + P(18,6)*vd*SH_TAS[0]);
Kfusion[19] = SK_TAS[0]*(P(19,4)*SH_TAS[2] - P(19,22)*SH_TAS[2] + P(19,5)*SK_TAS[1] - P(19,23)*SK_TAS[1] + P(19,6)*vd*SH_TAS[0]);
Kfusion[20] = SK_TAS[0]*(P(20,4)*SH_TAS[2] - P(20,22)*SH_TAS[2] + P(20,5)*SK_TAS[1] - P(20,23)*SK_TAS[1] + P(20,6)*vd*SH_TAS[0]);
Kfusion[21] = SK_TAS[0]*(P(21,4)*SH_TAS[2] - P(21,22)*SH_TAS[2] + P(21,5)*SK_TAS[1] - P(21,23)*SK_TAS[1] + P(21,6)*vd*SH_TAS[0]);
}
Kfusion[22] = SK_TAS[0]*(P(22,4)*SH_TAS[2] - P(22,22)*SH_TAS[2] + P(22,5)*SK_TAS[1] - P(22,23)*SK_TAS[1] + P(22,6)*vd*SH_TAS[0]);
Kfusion[23] = SK_TAS[0]*(P(23,4)*SH_TAS[2] - P(23,22)*SH_TAS[2] + P(23,5)*SK_TAS[1] - P(23,23)*SK_TAS[1] + P(23,6)*vd*SH_TAS[0]);
// Calculate measurement innovation
_airspeed_innov = v_tas_pred -
_airspeed_sample_delayed.true_airspeed;
// Calculate the innovation variance
_airspeed_innov_var = 1.0f / SK_TAS[0];
// Compute the ratio of innovation to gate size
_tas_test_ratio = sq(_airspeed_innov) / (sq(fmaxf(_params.tas_innov_gate, 1.0f)) * _airspeed_innov_var);
// If the innovation consistency check fails then don't fuse the sample and indicate bad airspeed health
if (_tas_test_ratio > 1.0f) {
_innov_check_fail_status.flags.reject_airspeed = true;
return;
} else {
_innov_check_fail_status.flags.reject_airspeed = false;
}
// Airspeed measurement sample has passed check so record it
_time_last_arsp_fuse = _time_last_imu;
// apply covariance correction via P_new = (I -K*H)*P
// first calculate expression for KHP
// then calculate P - KHP
matrix::SquareMatrix<float, _k_num_states> KHP;
float KH[5];
for (unsigned row = 0; row < _k_num_states; row++) {
KH[0] = Kfusion[row] * H_TAS[4];
KH[1] = Kfusion[row] * H_TAS[5];
KH[2] = Kfusion[row] * H_TAS[6];
KH[3] = Kfusion[row] * H_TAS[22];
KH[4] = Kfusion[row] * H_TAS[23];
for (unsigned column = 0; column < _k_num_states; column++) {
float tmp = KH[0] * P(4,column);
tmp += KH[1] * P(5,column);
tmp += KH[2] * P(6,column);
tmp += KH[3] * P(22,column);
tmp += KH[4] * P(23,column);
KHP(row,column) = tmp;
}
}
// if the covariance correction will result in a negative variance, then
// the covariance matrix is unhealthy and must be corrected
bool healthy = true;
_fault_status.flags.bad_airspeed = false;
for (int i = 0; i < _k_num_states; i++) {
if (P(i,i) < KHP(i,i)) {
// zero rows and columns
P.uncorrelateCovarianceSetVariance<1>(i, 0.0f);
//flag as unhealthy
healthy = false;
// update individual measurement health status
_fault_status.flags.bad_airspeed = true;
}
}
// only apply covariance and state corrections if healthy
if (healthy) {
// apply the covariance corrections
P = P - KHP;
// correct the covariance matrix for gross errors
fixCovarianceErrors(true);
// apply the state corrections
fuse(Kfusion, _airspeed_innov);
}
}
}
void Ekf::get_wind_velocity(float *wind)
{
wind[0] = _state.wind_vel(0);
wind[1] = _state.wind_vel(1);
}
void Ekf::get_wind_velocity_var(float *wind_var)
{
wind_var[0] = P(22,22);
wind_var[1] = P(23,23);
}
void Ekf::get_true_airspeed(float *tas)
{
float tempvar = sqrtf(sq(_state.vel(0) - _state.wind_vel(0)) + sq(_state.vel(1) - _state.wind_vel(1)) + sq(_state.vel(2)));
memcpy(tas, &tempvar, sizeof(float));
}
/*
* Reset the wind states using the current airspeed measurement, ground relative nav velocity, yaw angle and assumption of zero sideslip
*/
void Ekf::resetWindStates()
{
// get euler yaw angle
Eulerf euler321(_state.quat_nominal);
const float euler_yaw = euler321(2);
if (_tas_data_ready && (_imu_sample_delayed.time_us - _airspeed_sample_delayed.time_us < (uint64_t)5e5)) {
// estimate wind using zero sideslip assumption and airspeed measurement if airspeed available
_state.wind_vel(0) = _state.vel(0) - _airspeed_sample_delayed.true_airspeed * cosf(euler_yaw);
_state.wind_vel(1) = _state.vel(1) - _airspeed_sample_delayed.true_airspeed * sinf(euler_yaw);
} else {
// If we don't have an airspeed measurement, then assume the wind is zero
_state.wind_vel.setZero();
}
}