You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
16 KiB
469 lines
16 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2013 Estimation and Control Library (ECL). All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name ECL nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file estimator_interface.cpp |
|
* Definition of base class for attitude estimators |
|
* |
|
* @author Roman Bast <bapstroman@gmail.com> |
|
* @author Paul Riseborough <p_riseborough@live.com.au> |
|
* @author Siddharth B Purohit <siddharthbharatpurohit@gmail.com> |
|
*/ |
|
|
|
#include "estimator_interface.h" |
|
|
|
#include "../ecl.h" |
|
#include <math.h> |
|
#include "mathlib.h" |
|
|
|
// Accumulate imu data and store to buffer at desired rate |
|
void EstimatorInterface::setIMUData(uint64_t time_usec, uint64_t delta_ang_dt, uint64_t delta_vel_dt, |
|
float (&delta_ang)[3], float (&delta_vel)[3]) |
|
{ |
|
if (!_initialised) { |
|
init(time_usec); |
|
_initialised = true; |
|
} |
|
|
|
float dt = (float)(time_usec - _time_last_imu) / 1000 / 1000; |
|
dt = math::max(dt, 1.0e-4f); |
|
dt = math::min(dt, 0.02f); |
|
|
|
_time_last_imu = time_usec; |
|
|
|
if (_time_last_imu > 0) { |
|
_dt_imu_avg = 0.8f * _dt_imu_avg + 0.2f * dt; |
|
} |
|
|
|
// copy data |
|
imuSample imu_sample_new = {}; |
|
imu_sample_new.delta_ang = Vector3f(delta_ang); |
|
imu_sample_new.delta_vel = Vector3f(delta_vel); |
|
|
|
// convert time from us to secs |
|
imu_sample_new.delta_ang_dt = delta_ang_dt / 1e6f; |
|
imu_sample_new.delta_vel_dt = delta_vel_dt / 1e6f; |
|
imu_sample_new.time_us = time_usec; |
|
_imu_ticks++; |
|
|
|
// calculate a metric which indicates the amount of coning vibration |
|
Vector3f temp = cross_product(imu_sample_new.delta_ang, _delta_ang_prev); |
|
_vibe_metrics[0] = 0.99f * _vibe_metrics[0] + 0.01f * temp.norm(); |
|
|
|
// calculate a metric which indiates the amount of high frequency gyro vibration |
|
temp = imu_sample_new.delta_ang - _delta_ang_prev; |
|
_delta_ang_prev = imu_sample_new.delta_ang; |
|
_vibe_metrics[1] = 0.99f * _vibe_metrics[1] + 0.01f * temp.norm(); |
|
|
|
// calculate a metric which indicates the amount of high fequency accelerometer vibration |
|
temp = imu_sample_new.delta_vel - _delta_vel_prev; |
|
_delta_vel_prev = imu_sample_new.delta_vel; |
|
_vibe_metrics[2] = 0.99f * _vibe_metrics[2] + 0.01f * temp.norm(); |
|
|
|
// accumulate and down-sample imu data and push to the buffer when new downsampled data becomes available |
|
if (collect_imu(imu_sample_new)) { |
|
_imu_buffer.push(imu_sample_new); |
|
_imu_ticks = 0; |
|
_imu_updated = true; |
|
|
|
// down-sample the drag specific force data by accumulating and calculating the mean when |
|
// sufficient samples have been collected |
|
if (_params.fusion_mode & MASK_USE_DRAG) { |
|
_drag_sample_count ++; |
|
// note acceleration is accumulated as a delta velocity |
|
_drag_down_sampled.accelXY(0) += imu_sample_new.delta_vel(0); |
|
_drag_down_sampled.accelXY(1) += imu_sample_new.delta_vel(1); |
|
_drag_down_sampled.time_us += imu_sample_new.time_us; |
|
_drag_sample_time_dt += imu_sample_new.delta_vel_dt; |
|
|
|
// calculate the downsample ratio for drag specific force data |
|
uint8_t min_sample_ratio = (uint8_t) ceilf((float)_imu_buffer_length / _obs_buffer_length); |
|
|
|
if (min_sample_ratio < 5) { |
|
min_sample_ratio = 5; |
|
|
|
} |
|
|
|
// calculate and store means from accumulated values |
|
if (_drag_sample_count >= min_sample_ratio) { |
|
// note conversion from accumulated delta velocity to acceleration |
|
_drag_down_sampled.accelXY(0) /= _drag_sample_time_dt; |
|
_drag_down_sampled.accelXY(1) /= _drag_sample_time_dt; |
|
_drag_down_sampled.time_us /= _drag_sample_count; |
|
|
|
// write to buffer |
|
_drag_buffer.push(_drag_down_sampled); |
|
|
|
// reset accumulators |
|
_drag_sample_count = 0; |
|
_drag_down_sampled.accelXY.zero(); |
|
_drag_down_sampled.time_us = 0; |
|
_drag_sample_time_dt = 0.0f; |
|
|
|
} |
|
} |
|
|
|
// get the oldest data from the buffer |
|
_imu_sample_delayed = _imu_buffer.get_oldest(); |
|
|
|
// calculate the minimum interval between observations required to guarantee no loss of data |
|
// this will occur if data is overwritten before its time stamp falls behind the fusion time horizon |
|
_min_obs_interval_us = (_imu_sample_new.time_us - _imu_sample_delayed.time_us) / (_obs_buffer_length - 1); |
|
|
|
} else { |
|
_imu_updated = false; |
|
|
|
} |
|
} |
|
|
|
void EstimatorInterface::setMagData(uint64_t time_usec, float (&data)[3]) |
|
{ |
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_mag > _min_obs_interval_us) { |
|
|
|
magSample mag_sample_new = {}; |
|
mag_sample_new.time_us = time_usec - _params.mag_delay_ms * 1000; |
|
|
|
mag_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2; |
|
_time_last_mag = time_usec; |
|
|
|
mag_sample_new.mag = Vector3f(data); |
|
|
|
_mag_buffer.push(mag_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorInterface::setGpsData(uint64_t time_usec, struct gps_message *gps) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
bool need_gps = (_params.fusion_mode & MASK_USE_GPS) || (_params.vdist_sensor_type == VDIST_SENSOR_GPS); |
|
|
|
if (((time_usec - _time_last_gps) > _min_obs_interval_us) && need_gps && gps->fix_type > 2) { |
|
gpsSample gps_sample_new = {}; |
|
gps_sample_new.time_us = gps->time_usec - _params.gps_delay_ms * 1000; |
|
|
|
gps_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2; |
|
_time_last_gps = time_usec; |
|
|
|
gps_sample_new.time_us = math::max(gps_sample_new.time_us, _imu_sample_delayed.time_us); |
|
gps_sample_new.vel = Vector3f(gps->vel_ned); |
|
|
|
_gps_speed_valid = gps->vel_ned_valid; |
|
gps_sample_new.sacc = gps->sacc; |
|
gps_sample_new.hacc = gps->eph; |
|
gps_sample_new.vacc = gps->epv; |
|
|
|
gps_sample_new.hgt = (float)gps->alt * 1e-3f; |
|
|
|
// Only calculate the relative position if the WGS-84 location of the origin is set |
|
if (collect_gps(time_usec, gps)) { |
|
float lpos_x = 0.0f; |
|
float lpos_y = 0.0f; |
|
map_projection_project(&_pos_ref, (gps->lat / 1.0e7), (gps->lon / 1.0e7), &lpos_x, &lpos_y); |
|
gps_sample_new.pos(0) = lpos_x; |
|
gps_sample_new.pos(1) = lpos_y; |
|
|
|
} else { |
|
gps_sample_new.pos(0) = 0.0f; |
|
gps_sample_new.pos(1) = 0.0f; |
|
} |
|
|
|
_gps_buffer.push(gps_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorInterface::setBaroData(uint64_t time_usec, float data) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_baro > _min_obs_interval_us) { |
|
|
|
baroSample baro_sample_new{}; |
|
baro_sample_new.hgt = data; |
|
baro_sample_new.time_us = time_usec - _params.baro_delay_ms * 1000; |
|
|
|
baro_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2; |
|
_time_last_baro = time_usec; |
|
|
|
baro_sample_new.time_us = math::max(baro_sample_new.time_us, _imu_sample_delayed.time_us); |
|
|
|
_baro_buffer.push(baro_sample_new); |
|
} |
|
} |
|
|
|
void EstimatorInterface::setAirspeedData(uint64_t time_usec, float true_airspeed, float eas2tas) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_airspeed > _min_obs_interval_us) { |
|
airspeedSample airspeed_sample_new{}; |
|
airspeed_sample_new.true_airspeed = true_airspeed; |
|
airspeed_sample_new.eas2tas = eas2tas; |
|
airspeed_sample_new.time_us = time_usec - _params.airspeed_delay_ms * 1000; |
|
airspeed_sample_new.time_us -= FILTER_UPDATE_PERIOD_MS * 1000 / 2; //typo PeRRiod |
|
_time_last_airspeed = time_usec; |
|
|
|
_airspeed_buffer.push(airspeed_sample_new); |
|
} |
|
} |
|
static float rng; |
|
// set range data |
|
void EstimatorInterface::setRangeData(uint64_t time_usec, float data) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_range > _min_obs_interval_us) { |
|
rangeSample range_sample_new = {}; |
|
range_sample_new.rng = data; |
|
rng = data; |
|
range_sample_new.time_us = time_usec - _params.range_delay_ms * 1000; |
|
_time_last_range = time_usec; |
|
|
|
_range_buffer.push(range_sample_new); |
|
} |
|
} |
|
|
|
// set optical flow data |
|
void EstimatorInterface::setOpticalFlowData(uint64_t time_usec, flow_message *flow) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_optflow > _min_obs_interval_us) { |
|
// check if enough integration time and fail if integration time is less than 50% |
|
// of min arrival interval because too much data is being lost |
|
float delta_time = 1e-6f * (float)flow->dt; |
|
float delta_time_min = 5e-7f * (float)_min_obs_interval_us; |
|
bool delta_time_good = delta_time >= delta_time_min; |
|
if (!delta_time_good) { |
|
// protect against overflow casued by division with very small delta_time |
|
delta_time = delta_time_min; |
|
} |
|
|
|
|
|
// check magnitude is within sensor limits |
|
float flow_rate_magnitude; |
|
bool flow_magnitude_good = true; |
|
|
|
if (delta_time_good) { |
|
flow_rate_magnitude = flow->flowdata.norm() / delta_time; |
|
flow_magnitude_good = (flow_rate_magnitude <= _params.flow_rate_max); |
|
} |
|
|
|
// check quality metric |
|
bool flow_quality_good = (flow->quality >= _params.flow_qual_min); |
|
|
|
// Always use data when on ground to allow for bad quality due to unfocussed sensors and operator handling |
|
// If flow quality fails checks on ground, assume zero flow rate after body rate compensation |
|
if ((delta_time_good && flow_quality_good && flow_magnitude_good) || !_control_status.flags.in_air) { |
|
flowSample optflow_sample_new; |
|
// calculate the system time-stamp for the mid point of the integration period |
|
optflow_sample_new.time_us = time_usec - _params.flow_delay_ms * 1000 - flow->dt / 2; |
|
// copy the quality metric returned by the PX4Flow sensor |
|
optflow_sample_new.quality = flow->quality; |
|
// NOTE: the EKF uses the reverse sign convention to the flow sensor. EKF assumes positive LOS rate is produced by a RH rotation of the image about the sensor axis. |
|
// copy the optical and gyro measured delta angles |
|
optflow_sample_new.gyroXYZ = - flow->gyrodata; |
|
|
|
if (flow_quality_good) { |
|
optflow_sample_new.flowRadXY = - flow->flowdata; |
|
|
|
} else { |
|
// when on the ground with poor flow quality, assume zero ground relative velocity |
|
optflow_sample_new.flowRadXY(0) = - flow->gyrodata(0); |
|
optflow_sample_new.flowRadXY(1) = - flow->gyrodata(1); |
|
|
|
} |
|
|
|
// compensate for body motion to give a LOS rate |
|
optflow_sample_new.flowRadXYcomp(0) = optflow_sample_new.flowRadXY(0) - optflow_sample_new.gyroXYZ(0); |
|
optflow_sample_new.flowRadXYcomp(1) = optflow_sample_new.flowRadXY(1) - optflow_sample_new.gyroXYZ(1); |
|
// convert integration interval to seconds |
|
optflow_sample_new.dt = delta_time; |
|
_time_last_optflow = time_usec; |
|
// push to buffer |
|
_flow_buffer.push(optflow_sample_new); |
|
} |
|
} |
|
} |
|
|
|
// set attitude and position data derived from an external vision system |
|
void EstimatorInterface::setExtVisionData(uint64_t time_usec, ext_vision_message *evdata) |
|
{ |
|
if (!_initialised) { |
|
return; |
|
} |
|
|
|
// limit data rate to prevent data being lost |
|
if (time_usec - _time_last_ext_vision > _min_obs_interval_us) { |
|
extVisionSample ev_sample_new; |
|
// calculate the system time-stamp for the mid point of the integration period |
|
ev_sample_new.time_us = time_usec - _params.ev_delay_ms * 1000; |
|
// copy required data |
|
ev_sample_new.angErr = evdata->angErr; |
|
ev_sample_new.posErr = evdata->posErr; |
|
ev_sample_new.quat = evdata->quat; |
|
ev_sample_new.posNED = evdata->posNED; |
|
// record time for comparison next measurement |
|
_time_last_ext_vision = time_usec; |
|
// push to buffer |
|
_ext_vision_buffer.push(ev_sample_new); |
|
} |
|
} |
|
|
|
bool EstimatorInterface::initialise_interface(uint64_t timestamp) |
|
{ |
|
// find the maximum time delay the buffers are required to handle |
|
uint16_t max_time_delay_ms = math::max(_params.mag_delay_ms, |
|
math::max(_params.range_delay_ms, |
|
math::max(_params.gps_delay_ms, |
|
math::max(_params.flow_delay_ms, |
|
math::max(_params.ev_delay_ms, |
|
math::max(_params.min_delay_ms, |
|
math::max(_params.airspeed_delay_ms, _params.baro_delay_ms))))))); |
|
|
|
// calculate the IMU buffer length required to accomodate the maximum delay with some allowance for jitter |
|
_imu_buffer_length = (max_time_delay_ms / FILTER_UPDATE_PERIOD_MS) + 1; |
|
|
|
// set the observaton buffer length to handle the minimum time of arrival between observations in combination |
|
// with the worst case delay from current time to ekf fusion time |
|
// allow for worst case 50% extension of the ekf fusion time horizon delay due to timing jitter |
|
uint16_t ekf_delay_ms = max_time_delay_ms + (int)(ceilf((float)max_time_delay_ms * 0.5f)); |
|
_obs_buffer_length = (ekf_delay_ms / _params.sensor_interval_min_ms) + 1; |
|
|
|
// limit to be no longer than the IMU buffer (we can't process data faster than the EKF prediction rate) |
|
_obs_buffer_length = math::min(_obs_buffer_length, _imu_buffer_length); |
|
|
|
if (!(_imu_buffer.allocate(_imu_buffer_length) && |
|
_gps_buffer.allocate(_obs_buffer_length) && |
|
_mag_buffer.allocate(_obs_buffer_length) && |
|
_baro_buffer.allocate(_obs_buffer_length) && |
|
_range_buffer.allocate(_obs_buffer_length) && |
|
_airspeed_buffer.allocate(_obs_buffer_length) && |
|
_flow_buffer.allocate(_obs_buffer_length) && |
|
_ext_vision_buffer.allocate(_obs_buffer_length) && |
|
_drag_buffer.allocate(_obs_buffer_length) && |
|
_output_buffer.allocate(_imu_buffer_length) && |
|
_output_vert_buffer.allocate(_imu_buffer_length))) { |
|
ECL_ERR("EKF buffer allocation failed!"); |
|
unallocate_buffers(); |
|
return false; |
|
} |
|
|
|
// zero the data in the observation buffers |
|
for (int index = 0; index < _obs_buffer_length; index++) { |
|
gpsSample gps_sample_init = {}; |
|
_gps_buffer.push(gps_sample_init); |
|
magSample mag_sample_init = {}; |
|
_mag_buffer.push(mag_sample_init); |
|
baroSample baro_sample_init = {}; |
|
_baro_buffer.push(baro_sample_init); |
|
rangeSample range_sample_init = {}; |
|
_range_buffer.push(range_sample_init); |
|
airspeedSample airspeed_sample_init = {}; |
|
_airspeed_buffer.push(airspeed_sample_init); |
|
flowSample flow_sample_init = {}; |
|
_flow_buffer.push(flow_sample_init); |
|
extVisionSample ext_vision_sample_init = {}; |
|
_ext_vision_buffer.push(ext_vision_sample_init); |
|
dragSample drag_sample_init = {}; |
|
_drag_buffer.push(drag_sample_init); |
|
} |
|
|
|
// zero the data in the imu data and output observer state buffers |
|
for (int index = 0; index < _imu_buffer_length; index++) { |
|
imuSample imu_sample_init = {}; |
|
_imu_buffer.push(imu_sample_init); |
|
outputSample output_sample_init = {}; |
|
_output_buffer.push(output_sample_init); |
|
} |
|
|
|
_dt_imu_avg = 0.0f; |
|
|
|
_imu_sample_delayed.delta_ang.setZero(); |
|
_imu_sample_delayed.delta_vel.setZero(); |
|
_imu_sample_delayed.delta_ang_dt = 0.0f; |
|
_imu_sample_delayed.delta_vel_dt = 0.0f; |
|
_imu_sample_delayed.time_us = timestamp; |
|
|
|
_imu_ticks = 0; |
|
|
|
_initialised = false; |
|
|
|
_time_last_imu = 0; |
|
_time_last_gps = 0; |
|
_time_last_mag = 0; |
|
_time_last_baro = 0; |
|
_time_last_range = 0; |
|
_time_last_airspeed = 0; |
|
_time_last_optflow = 0; |
|
_fault_status.value = 0; |
|
_time_last_ext_vision = 0; |
|
return true; |
|
} |
|
|
|
void EstimatorInterface::unallocate_buffers() |
|
{ |
|
_imu_buffer.unallocate(); |
|
_gps_buffer.unallocate(); |
|
_mag_buffer.unallocate(); |
|
_baro_buffer.unallocate(); |
|
_range_buffer.unallocate(); |
|
_airspeed_buffer.unallocate(); |
|
_flow_buffer.unallocate(); |
|
_ext_vision_buffer.unallocate(); |
|
_output_buffer.unallocate(); |
|
_output_vert_buffer.unallocate(); |
|
|
|
} |
|
|
|
bool EstimatorInterface::local_position_is_valid() |
|
{ |
|
// return true if we are not doing unconstrained free inertial navigation |
|
return !inertial_dead_reckoning(); |
|
}
|
|
|