You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1419 lines
43 KiB
1419 lines
43 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Petri Tanskanen <petri.tanskanen@inf.ethz.ch> |
|
* @author Lorenz Meier <lm@inf.ethz.ch> |
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file commander.c |
|
* Main system state machine implementation. |
|
*/ |
|
|
|
#include "commander.h" |
|
|
|
#include <nuttx/config.h> |
|
#include <pthread.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <stdbool.h> |
|
#include <string.h> |
|
#include <unistd.h> |
|
#include <fcntl.h> |
|
#include <errno.h> |
|
#include <debug.h> |
|
#include <sys/prctl.h> |
|
#include <v1.0/common/mavlink.h> |
|
#include <string.h> |
|
#include <arch/board/drv_led.h> |
|
#include <arch/board/up_hrt.h> |
|
#include <arch/board/drv_tone_alarm.h> |
|
#include <arch/board/up_hrt.h> |
|
#include "state_machine_helper.h" |
|
#include "systemlib/systemlib.h" |
|
#include <math.h> |
|
#include <poll.h> |
|
#include <uORB/uORB.h> |
|
#include <uORB/topics/sensor_combined.h> |
|
#include <uORB/topics/rc_channels.h> |
|
#include <uORB/topics/vehicle_gps_position.h> |
|
#include <uORB/topics/vehicle_command.h> |
|
#include <uORB/topics/subsystem_info.h> |
|
#include <uORB/topics/actuator_controls.h> |
|
#include <mavlink/mavlink_log.h> |
|
|
|
#include <systemlib/param/param.h> |
|
#include <systemlib/systemlib.h> |
|
#include <systemlib/err.h> |
|
|
|
/* XXX MOVE CALIBRATION TO SENSORS APP THREAD */ |
|
#include <drivers/drv_accel.h> |
|
#include <drivers/drv_gyro.h> |
|
#include <drivers/drv_mag.h> |
|
#include <drivers/drv_baro.h> |
|
|
|
|
|
|
|
|
|
#include <arch/board/up_cpuload.h> |
|
extern struct system_load_s system_load; |
|
|
|
/* Decouple update interval and hysteris counters, all depends on intervals */ |
|
#define COMMANDER_MONITORING_INTERVAL 50000 |
|
#define COMMANDER_MONITORING_LOOPSPERMSEC (1/(COMMANDER_MONITORING_INTERVAL/1000.0f)) |
|
#define LOW_VOLTAGE_BATTERY_COUNTER_LIMIT (LOW_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
#define CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT (CRITICAL_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
|
|
#define STICK_ON_OFF_LIMIT 7500 |
|
#define STICK_THRUST_RANGE 20000 |
|
#define STICK_ON_OFF_HYSTERESIS_TIME_MS 1000 |
|
#define STICK_ON_OFF_COUNTER_LIMIT (STICK_ON_OFF_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
|
|
#define GPS_FIX_TYPE_2D 2 |
|
#define GPS_FIX_TYPE_3D 3 |
|
#define GPS_QUALITY_GOOD_COUNTER_LIMIT 50 |
|
|
|
/* File descriptors */ |
|
static int leds; |
|
static int buzzer; |
|
static int mavlink_fd; |
|
static bool commander_initialized = false; |
|
static struct vehicle_status_s current_status; /**< Main state machine */ |
|
static orb_advert_t stat_pub; |
|
|
|
static uint16_t nofix_counter = 0; |
|
static uint16_t gotfix_counter = 0; |
|
|
|
static bool thread_should_exit = false; /**< Deamon exit flag */ |
|
static bool thread_running = false; /**< Deamon status flag */ |
|
static int deamon_task; /**< Handle of deamon task / thread */ |
|
|
|
/* pthread loops */ |
|
static void *command_handling_loop(void *arg); |
|
static void *orb_receive_loop(void *arg); |
|
|
|
__EXPORT int commander_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Mainloop of commander. |
|
*/ |
|
int commander_thread_main(int argc, char *argv[]); |
|
|
|
static int buzzer_init(void); |
|
static void buzzer_deinit(void); |
|
static int led_init(void); |
|
static void led_deinit(void); |
|
static int led_toggle(int led); |
|
static int led_on(int led); |
|
static int led_off(int led); |
|
static void do_gyro_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void do_mag_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void do_accel_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void handle_command(int status_pub, struct vehicle_status_s *current_status, struct vehicle_command_s *cmd); |
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state); |
|
|
|
|
|
|
|
/** |
|
* Print the correct usage. |
|
*/ |
|
static void usage(const char *reason); |
|
|
|
/** |
|
* Sort calibration values. |
|
* |
|
* Sorts the calibration values with bubble sort. |
|
* |
|
* @param a The array to sort |
|
* @param n The number of entries in the array |
|
*/ |
|
static void cal_bsort(float a[], int n); |
|
|
|
static int buzzer_init() |
|
{ |
|
buzzer = open("/dev/tone_alarm", O_WRONLY); |
|
|
|
if (buzzer < 0) { |
|
fprintf(stderr, "[commander] Buzzer: open fail\n"); |
|
return ERROR; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void buzzer_deinit() |
|
{ |
|
close(buzzer); |
|
} |
|
|
|
|
|
static int led_init() |
|
{ |
|
leds = open("/dev/led", O_RDONLY | O_NONBLOCK); |
|
|
|
if (leds < 0) { |
|
fprintf(stderr, "[commander] LED: open fail\n"); |
|
return ERROR; |
|
} |
|
|
|
if (ioctl(leds, LED_ON, LED_BLUE) || ioctl(leds, LED_ON, LED_AMBER)) { |
|
fprintf(stderr, "[commander] LED: ioctl fail\n"); |
|
return ERROR; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void led_deinit() |
|
{ |
|
close(leds); |
|
} |
|
|
|
static int led_toggle(int led) |
|
{ |
|
static int last_blue = LED_ON; |
|
static int last_amber = LED_ON; |
|
|
|
if (led == LED_BLUE) last_blue = (last_blue == LED_ON) ? LED_OFF : LED_ON; |
|
|
|
if (led == LED_AMBER) last_amber = (last_amber == LED_ON) ? LED_OFF : LED_ON; |
|
|
|
return ioctl(leds, ((led == LED_BLUE) ? last_blue : last_amber), led); |
|
} |
|
|
|
static int led_on(int led) |
|
{ |
|
return ioctl(leds, LED_ON, led); |
|
} |
|
|
|
static int led_off(int led) |
|
{ |
|
return ioctl(leds, LED_OFF, led); |
|
} |
|
|
|
enum AUDIO_PATTERN { |
|
AUDIO_PATTERN_ERROR = 1, |
|
AUDIO_PATTERN_NOTIFY_POSITIVE = 2, |
|
AUDIO_PATTERN_NOTIFY_NEUTRAL = 3, |
|
AUDIO_PATTERN_NOTIFY_NEGATIVE = 4, |
|
AUDIO_PATTERN_TETRIS = 5 |
|
}; |
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state) { |
|
|
|
/* Trigger alarm if going into any error state */ |
|
if (((new_state == SYSTEM_STATE_GROUND_ERROR) && (old_state != SYSTEM_STATE_GROUND_ERROR)) || |
|
((new_state == SYSTEM_STATE_MISSION_ABORT) && (old_state != SYSTEM_STATE_MISSION_ABORT))) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_ERROR); |
|
} |
|
|
|
/* Trigger neutral on arming / disarming */ |
|
if (((new_state == SYSTEM_STATE_GROUND_READY) && (old_state != SYSTEM_STATE_GROUND_READY))) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_NOTIFY_NEUTRAL); |
|
} |
|
|
|
/* Trigger Tetris on being bored */ |
|
|
|
return 0; |
|
} |
|
|
|
static void cal_bsort(float a[], int n) |
|
{ |
|
int i,j,t; |
|
for(i=0;i<n-1;i++) |
|
{ |
|
for(j=0;j<n-i-1;j++) |
|
{ |
|
if(a[j]>a[j+1]) { |
|
t=a[j]; |
|
a[j]=a[j+1]; |
|
a[j+1]=t; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void do_mag_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* set to mag calibration mode */ |
|
status->flag_preflight_mag_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
/* 30 seconds */ |
|
const uint64_t calibration_interval_us = 45 * 1000000; |
|
unsigned int calibration_counter = 0; |
|
|
|
const int peak_samples = 2000; |
|
/* Get rid of 10% */ |
|
const int outlier_margin = (peak_samples) / 10; |
|
|
|
float *mag_maxima[3]; |
|
mag_maxima[0] = (float*)malloc(peak_samples * sizeof(float)); |
|
mag_maxima[1] = (float*)malloc(peak_samples * sizeof(float)); |
|
mag_maxima[2] = (float*)malloc(peak_samples * sizeof(float)); |
|
|
|
float *mag_minima[3]; |
|
mag_minima[0] = (float*)malloc(peak_samples * sizeof(float)); |
|
mag_minima[1] = (float*)malloc(peak_samples * sizeof(float)); |
|
mag_minima[2] = (float*)malloc(peak_samples * sizeof(float)); |
|
|
|
/* initialize data table */ |
|
for (int i = 0; i < peak_samples; i++) { |
|
mag_maxima[0][i] = FLT_MIN; |
|
mag_maxima[1][i] = FLT_MIN; |
|
mag_maxima[2][i] = FLT_MIN; |
|
|
|
mag_minima[0][i] = FLT_MAX; |
|
mag_minima[1][i] = FLT_MAX; |
|
mag_minima[2][i] = FLT_MAX; |
|
} |
|
|
|
int fd = open(MAG_DEVICE_PATH, 0); |
|
struct mag_scale mscale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) |
|
warn("WARNING: failed to set scale / offsets for mag"); |
|
close(fd); |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] Please rotate around all axes."); |
|
|
|
uint64_t calibration_start = hrt_absolute_time(); |
|
while ((hrt_absolute_time() - calibration_start) < calibration_interval_us) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
/* get min/max values */ |
|
|
|
/* iterate through full list */ |
|
for (int i = 0; i < peak_samples; i++) { |
|
/* x minimum */ |
|
if (raw.magnetometer_raw[0] < mag_minima[0][i]) |
|
mag_minima[0][i] = raw.magnetometer_ga[0]; |
|
/* y minimum */ |
|
if (raw.magnetometer_raw[1] < mag_minima[1][i]) |
|
mag_minima[1][i] = raw.magnetometer_ga[1]; |
|
/* z minimum */ |
|
if (raw.magnetometer_raw[2] < mag_minima[2][i]) |
|
mag_minima[2][i] = raw.magnetometer_ga[2]; |
|
|
|
/* x maximum */ |
|
if (raw.magnetometer_raw[0] > mag_maxima[0][i]) |
|
mag_maxima[0][i] = raw.magnetometer_ga[0]; |
|
/* y maximum */ |
|
if (raw.magnetometer_raw[1] > mag_maxima[1][i]) |
|
mag_maxima[1][i] = raw.magnetometer_ga[1]; |
|
/* z maximum */ |
|
if (raw.magnetometer_raw[2] > mag_maxima[2][i]) |
|
mag_maxima[2][i] = raw.magnetometer_ga[2]; |
|
} |
|
|
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
//mavlink_log_info(mavlink_fd, "[commander] mag calibration aborted, please retry."); |
|
//break; |
|
} |
|
} |
|
|
|
/* disable calibration mode */ |
|
status->flag_preflight_mag_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
/* sort values */ |
|
cal_bsort(mag_minima[0], peak_samples); |
|
cal_bsort(mag_minima[1], peak_samples); |
|
cal_bsort(mag_minima[2], peak_samples); |
|
|
|
cal_bsort(mag_maxima[0], peak_samples); |
|
cal_bsort(mag_maxima[1], peak_samples); |
|
cal_bsort(mag_maxima[2], peak_samples); |
|
|
|
float min_avg[3] = { 0.0f, 0.0f, 0.0f }; |
|
float max_avg[3] = { 0.0f, 0.0f, 0.0f }; |
|
|
|
// printf("start:\n"); |
|
|
|
// for (int i = 0; i < 10; i++) { |
|
// printf("mag min: %8.4f\t%8.4f\t%8.4f\tmax: %8.4f\t%8.4f\t%8.4f\n", |
|
// mag_minima[0][i], |
|
// mag_minima[1][i], |
|
// mag_minima[2][i], |
|
// mag_maxima[0][i], |
|
// mag_maxima[1][i], |
|
// mag_maxima[2][i]); |
|
// usleep(10000); |
|
// } |
|
// printf("-----\n"); |
|
|
|
// for (int i = (peak_samples - outlier_margin)-10; i < (peak_samples - outlier_margin); i++) { |
|
// printf("mag min: %8.4f\t%8.4f\t%8.4f\tmax: %8.4f\t%8.4f\t%8.4f\n", |
|
// mag_minima[0][i], |
|
// mag_minima[1][i], |
|
// mag_minima[2][i], |
|
// mag_maxima[0][i], |
|
// mag_maxima[1][i], |
|
// mag_maxima[2][i]); |
|
// usleep(10000); |
|
// } |
|
|
|
// printf("end\n"); |
|
|
|
/* take average of center value group */ |
|
for (int i = 0; i < (peak_samples - outlier_margin); i++) { |
|
min_avg[0] += mag_minima[0][i+outlier_margin]; |
|
min_avg[1] += mag_minima[1][i+outlier_margin]; |
|
min_avg[2] += mag_minima[2][i+outlier_margin]; |
|
|
|
max_avg[0] += mag_maxima[0][i]; |
|
max_avg[1] += mag_maxima[1][i]; |
|
max_avg[2] += mag_maxima[2][i]; |
|
} |
|
|
|
min_avg[0] /= (peak_samples - outlier_margin); |
|
min_avg[1] /= (peak_samples - outlier_margin); |
|
min_avg[2] /= (peak_samples - outlier_margin); |
|
|
|
max_avg[0] /= (peak_samples - outlier_margin); |
|
max_avg[1] /= (peak_samples - outlier_margin); |
|
max_avg[2] /= (peak_samples - outlier_margin); |
|
|
|
// printf("\nFINAL:\nmag min: %8.4f\t%8.4f\t%8.4f\nmax: %8.4f\t%8.4f\t%8.4f\n", (double)min_avg[0], |
|
// (double)min_avg[1], (double)min_avg[2], (double)max_avg[0], (double)max_avg[1], (double)max_avg[2]); |
|
|
|
float mag_offset[3]; |
|
|
|
/** |
|
* The offset is subtracted from the sensor values, so the result is the |
|
* POSITIVE number that has to be subtracted from the sensor data |
|
* to shift the center to zero |
|
* |
|
* offset = max - ((max - min) / 2.0f) |
|
* |
|
* which reduces to |
|
* |
|
* offset = (max + min) / 2.0f |
|
*/ |
|
|
|
mag_offset[0] = (max_avg[0] + min_avg[0]) / 2.0f; |
|
mag_offset[1] = (max_avg[1] + min_avg[1]) / 2.0f; |
|
mag_offset[2] = (max_avg[2] + min_avg[2]) / 2.0f; |
|
|
|
if (!isfinite(mag_offset[1]) || !isfinite(mag_offset[1]) || !isfinite(mag_offset[2])) { |
|
|
|
mavlink_log_critical(mavlink_fd, "[commander] MAG calibration failed (INF/NAN)"); |
|
} else { |
|
/* announce and set new offset */ |
|
|
|
// char offset_output[50]; |
|
// sprintf(offset_output, "[commander] mag cal: %8.4f %8.4f %8.4f", (double)mag_offset[0], (double)mag_offset[1], (double)mag_offset[2]); |
|
// mavlink_log_info(mavlink_fd, offset_output); |
|
|
|
if (param_set(param_find("SENSOR_MAG_XOFF"), &(mag_offset[0]))) { |
|
fprintf(stderr, "[commander] Setting X mag offset failed!\n"); |
|
} |
|
|
|
if (param_set(param_find("SENSOR_MAG_YOFF"), &(mag_offset[1]))) { |
|
fprintf(stderr, "[commander] Setting Y mag offset failed!\n"); |
|
} |
|
|
|
if (param_set(param_find("SENSOR_MAG_ZOFF"), &(mag_offset[2]))) { |
|
fprintf(stderr, "[commander] Setting Z mag offset failed!\n"); |
|
} |
|
} |
|
|
|
fd = open(MAG_DEVICE_PATH, 0); |
|
struct mag_scale mscale = { |
|
mag_offset[0], |
|
1.0f, |
|
mag_offset[1], |
|
1.0f, |
|
mag_offset[2], |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale)) |
|
warn("WARNING: failed to set scale / offsets for mag"); |
|
close(fd); |
|
|
|
free(mag_maxima[0]); |
|
free(mag_maxima[1]); |
|
free(mag_maxima[2]); |
|
|
|
free(mag_minima[0]); |
|
free(mag_minima[1]); |
|
free(mag_minima[2]); |
|
|
|
close(sub_sensor_combined); |
|
} |
|
|
|
void do_gyro_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* set to gyro calibration mode */ |
|
status->flag_preflight_gyro_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
const int calibration_count = 5000; |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
int calibration_counter = 0; |
|
float gyro_offset[3] = {0.0f, 0.0f, 0.0f}; |
|
|
|
/* set offsets to zero */ |
|
int fd = open(GYRO_DEVICE_PATH, 0); |
|
struct gyro_scale gscale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale_null)) |
|
warn("WARNING: failed to set scale / offsets for gyro"); |
|
close(fd); |
|
|
|
while (calibration_counter < calibration_count) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
gyro_offset[0] += raw.gyro_rad_s[0]; |
|
gyro_offset[1] += raw.gyro_rad_s[1]; |
|
gyro_offset[2] += raw.gyro_rad_s[2]; |
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration aborted, please retry."); |
|
return; |
|
} |
|
} |
|
|
|
gyro_offset[0] = gyro_offset[0] / calibration_count; |
|
gyro_offset[1] = gyro_offset[1] / calibration_count; |
|
gyro_offset[2] = gyro_offset[2] / calibration_count; |
|
|
|
if (param_set(param_find("SENSOR_GYRO_XOFF"), &(gyro_offset[0]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X gyro offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENSOR_GYRO_YOFF"), &(gyro_offset[1]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y gyro offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENSOR_GYRO_ZOFF"), &(gyro_offset[2]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z gyro offset failed!"); |
|
} |
|
|
|
/* set offsets to actual value */ |
|
fd = open(GYRO_DEVICE_PATH, 0); |
|
struct gyro_scale gscale = { |
|
gyro_offset[0], |
|
1.0f, |
|
gyro_offset[1], |
|
1.0f, |
|
gyro_offset[2], |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale)) |
|
warn("WARNING: failed to set scale / offsets for gyro"); |
|
close(fd); |
|
|
|
/* exit to gyro calibration mode */ |
|
status->flag_preflight_gyro_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
// char offset_output[50]; |
|
// sprintf(offset_output, "[commander] gyro cal: x:%8.4f y:%8.4f z:%8.4f", (double)gyro_offset[0], (double)gyro_offset[1], (double)gyro_offset[2]); |
|
// mavlink_log_info(mavlink_fd, offset_output); |
|
|
|
close(sub_sensor_combined); |
|
} |
|
|
|
void do_accel_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* announce change */ |
|
usleep(5000); |
|
mavlink_log_info(mavlink_fd, "[commander] The system should be level and not moved"); |
|
|
|
/* set to accel calibration mode */ |
|
status->flag_preflight_accel_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
const int calibration_count = 5000; |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
int calibration_counter = 0; |
|
float accel_offset[3] = {0.0f, 0.0f, 0.0f}; |
|
|
|
int fd = open(ACCEL_DEVICE_PATH, 0); |
|
struct accel_scale ascale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale_null)) |
|
warn("WARNING: failed to set scale / offsets for accel"); |
|
close(fd); |
|
|
|
while (calibration_counter < calibration_count) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
accel_offset[0] += raw.accelerometer_m_s2[0]; |
|
accel_offset[1] += raw.accelerometer_m_s2[1]; |
|
accel_offset[2] += raw.accelerometer_m_s2[2]; |
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration aborted, please retry."); |
|
return; |
|
} |
|
} |
|
|
|
accel_offset[0] = accel_offset[0] / calibration_count; |
|
accel_offset[1] = accel_offset[1] / calibration_count; |
|
accel_offset[2] = accel_offset[2] / calibration_count; |
|
|
|
/* add the removed length from x / y to z, since we induce a scaling issue else */ |
|
float total_len = sqrtf(accel_offset[0]*accel_offset[0] + accel_offset[1]*accel_offset[1] + accel_offset[2]*accel_offset[2]); |
|
|
|
/* if length is correct, zero results here */ |
|
accel_offset[2] = accel_offset[2] + total_len; |
|
|
|
float scale = 9.80665f / total_len; |
|
|
|
if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offset[0]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_YOFF"), &(accel_offset[1]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_ZOFF"), &(accel_offset[2]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_XSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_YSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_ZSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!"); |
|
} |
|
|
|
fd = open(ACCEL_DEVICE_PATH, 0); |
|
struct accel_scale ascale = { |
|
accel_offset[0], |
|
scale, |
|
accel_offset[1], |
|
scale, |
|
accel_offset[2], |
|
scale, |
|
}; |
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale)) |
|
warn("WARNING: failed to set scale / offsets for accel"); |
|
close(fd); |
|
|
|
/* exit to gyro calibration mode */ |
|
status->flag_preflight_accel_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
// char offset_output[50]; |
|
// sprintf(offset_output, "[commander] accel cal: x:%8.4f y:%8.4f z:%8.4f", (double)accel_offset[0], |
|
// (double)accel_offset[1], (double)accel_offset[2]); |
|
// mavlink_log_info(mavlink_fd, offset_output); |
|
|
|
close(sub_sensor_combined); |
|
} |
|
|
|
|
|
|
|
void handle_command(int status_pub, struct vehicle_status_s *current_vehicle_status, struct vehicle_command_s *cmd) |
|
{ |
|
/* result of the command */ |
|
uint8_t result = MAV_RESULT_UNSUPPORTED; |
|
|
|
|
|
/* supported command handling start */ |
|
|
|
/* request to set different system mode */ |
|
switch (cmd->command) { |
|
case MAV_CMD_DO_SET_MODE: |
|
{ |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, (uint8_t)cmd->param1)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
break; |
|
|
|
case MAV_CMD_COMPONENT_ARM_DISARM: { |
|
/* request to arm */ |
|
if ((int)cmd->param1 == 1) { |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
/* request to disarm */ |
|
} else if ((int)cmd->param1 == 0) { |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
/* request for an autopilot reboot */ |
|
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: { |
|
if ((int)cmd->param1 == 1) { |
|
if (OK == do_state_update(status_pub, current_vehicle_status, mavlink_fd, SYSTEM_STATE_REBOOT)) { |
|
/* SPECIAL CASE: SYSTEM WILL NEVER RETURN HERE */ |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
/* system may return here */ |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
// /* request to land */ |
|
// case MAV_CMD_NAV_LAND: |
|
// { |
|
// //TODO: add check if landing possible |
|
// //TODO: add landing maneuver |
|
// |
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_ARMED)) { |
|
// result = MAV_RESULT_ACCEPTED; |
|
// } } |
|
// break; |
|
// |
|
// /* request to takeoff */ |
|
// case MAV_CMD_NAV_TAKEOFF: |
|
// { |
|
// //TODO: add check if takeoff possible |
|
// //TODO: add takeoff maneuver |
|
// |
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_AUTO)) { |
|
// result = MAV_RESULT_ACCEPTED; |
|
// } |
|
// } |
|
// break; |
|
// |
|
/* preflight calibration */ |
|
case MAV_CMD_PREFLIGHT_CALIBRATION: { |
|
bool handled = false; |
|
|
|
/* gyro calibration */ |
|
if ((int)(cmd->param1) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting gyro calibration"); |
|
do_gyro_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished gyro calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING gyro calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* magnetometer calibration */ |
|
if ((int)(cmd->param2) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting mag calibration"); |
|
do_mag_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished mag calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] CMD REJECTING mag calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* accel calibration */ |
|
if ((int)(cmd->param5) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting accel calibration"); |
|
do_accel_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished accel calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING accel calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* none found */ |
|
if (!handled) { |
|
//fprintf(stderr, "[commander] refusing unsupported calibration request\n"); |
|
mavlink_log_critical(mavlink_fd, "[commander] CMD refusing unsupported calibration request"); |
|
result = MAV_RESULT_UNSUPPORTED; |
|
} |
|
} |
|
break; |
|
|
|
/* |
|
* do not report an error for commands that are |
|
* handled directly by MAVLink. |
|
*/ |
|
case MAV_CMD_PREFLIGHT_STORAGE: |
|
break; |
|
|
|
default: { |
|
mavlink_log_critical(mavlink_fd, "[commander] refusing unsupported command"); |
|
result = MAV_RESULT_UNSUPPORTED; |
|
} |
|
break; |
|
} |
|
|
|
/* supported command handling stop */ |
|
|
|
|
|
/* send any requested ACKs */ |
|
if (cmd->confirmation > 0) { |
|
/* send acknowledge command */ |
|
// XXX TODO |
|
} |
|
|
|
} |
|
|
|
/** |
|
* Handle commands sent by the ground control station via MAVLink. |
|
*/ |
|
static void *command_handling_loop(void *arg) |
|
{ |
|
/* Set thread name */ |
|
prctl(PR_SET_NAME, "commander cmd handler", getpid()); |
|
|
|
/* Subscribe to command topic */ |
|
int cmd_sub = orb_subscribe(ORB_ID(vehicle_command)); |
|
struct vehicle_command_s cmd; |
|
|
|
while (!thread_should_exit) { |
|
struct pollfd fds[1] = { { .fd = cmd_sub, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 5000) == 0) { |
|
/* timeout, but this is no problem, silently ignore */ |
|
} else { |
|
/* got command */ |
|
orb_copy(ORB_ID(vehicle_command), cmd_sub, &cmd); |
|
|
|
/* handle it */ |
|
handle_command(stat_pub, ¤t_status, &cmd); |
|
} |
|
} |
|
|
|
close(cmd_sub); |
|
|
|
return NULL; |
|
} |
|
|
|
static void *orb_receive_loop(void *arg) //handles status information coming from subsystems (present, enabled, health), these values do not indicate the quality (variance) of the signal |
|
{ |
|
/* Set thread name */ |
|
prctl(PR_SET_NAME, "commander orb rcv", getpid()); |
|
|
|
/* Subscribe to command topic */ |
|
int subsys_sub = orb_subscribe(ORB_ID(subsystem_info)); |
|
struct subsystem_info_s info; |
|
|
|
while (!thread_should_exit) { |
|
struct pollfd fds[1] = { { .fd = subsys_sub, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 5000) == 0) { |
|
/* timeout, but this is no problem, silently ignore */ |
|
} else { |
|
/* got command */ |
|
orb_copy(ORB_ID(subsystem_info), subsys_sub, &info); |
|
|
|
printf("Subsys changed: %d\n", (int)info.subsystem_type); |
|
} |
|
} |
|
|
|
close(subsys_sub); |
|
|
|
return NULL; |
|
} |
|
|
|
|
|
|
|
enum BAT_CHEM { |
|
BAT_CHEM_LITHIUM_POLYMERE = 0, |
|
}; |
|
|
|
/* |
|
* Provides a coarse estimate of remaining battery power. |
|
* |
|
* The estimate is very basic and based on decharging voltage curves. |
|
* |
|
* @return the estimated remaining capacity in 0..1 |
|
*/ |
|
float battery_remaining_estimate_voltage(int cells, int chemistry, float voltage); |
|
|
|
PARAM_DEFINE_FLOAT(BAT_V_EMPTY, 3.2f); |
|
PARAM_DEFINE_FLOAT(BAT_V_FULL, 4.05f); |
|
|
|
float battery_remaining_estimate_voltage(int cells, int chemistry, float voltage) |
|
{ |
|
float ret = 0; |
|
static param_t bat_volt_empty; |
|
static param_t bat_volt_full; |
|
static bool initialized = false; |
|
static unsigned int counter = 0; |
|
|
|
if (!initialized) { |
|
bat_volt_empty = param_find("BAT_V_EMPTY"); |
|
bat_volt_full = param_find("BAT_V_FULL"); |
|
initialized = true; |
|
} |
|
|
|
float chemistry_voltage_empty[1] = { 3.2f }; |
|
float chemistry_voltage_full[1] = { 4.05f }; |
|
|
|
if (counter % 100 == 0) { |
|
param_get(bat_volt_empty, &(chemistry_voltage_empty[0])); |
|
param_get(bat_volt_full, &(chemistry_voltage_full[0])); |
|
} |
|
counter++; |
|
|
|
ret = (voltage - cells * chemistry_voltage_empty[chemistry]) / (cells * (chemistry_voltage_full[chemistry] - chemistry_voltage_empty[chemistry])); |
|
|
|
/* limit to sane values */ |
|
ret = (ret < 0) ? 0 : ret; |
|
ret = (ret > 1) ? 1 : ret; |
|
return ret; |
|
} |
|
|
|
static void |
|
usage(const char *reason) |
|
{ |
|
if (reason) |
|
fprintf(stderr, "%s\n", reason); |
|
fprintf(stderr, "usage: deamon {start|stop|status} [-p <additional params>]\n\n"); |
|
exit(1); |
|
} |
|
|
|
/** |
|
* The deamon app only briefly exists to start |
|
* the background job. The stack size assigned in the |
|
* Makefile does only apply to this management task. |
|
* |
|
* The actual stack size should be set in the call |
|
* to task_create(). |
|
*/ |
|
int commander_main(int argc, char *argv[]) |
|
{ |
|
if (argc < 1) |
|
usage("missing command"); |
|
|
|
if (!strcmp(argv[1], "start")) { |
|
|
|
if (thread_running) { |
|
printf("commander already running\n"); |
|
/* this is not an error */ |
|
exit(0); |
|
} |
|
|
|
thread_should_exit = false; |
|
deamon_task = task_create("commander", SCHED_PRIORITY_MAX - 50, 4096, commander_thread_main, (argv) ? (const char **)&argv[2] : (const char **)NULL); |
|
thread_running = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "stop")) { |
|
thread_should_exit = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "status")) { |
|
if (thread_running) { |
|
printf("\tcommander is running\n"); |
|
} else { |
|
printf("\tcommander not started\n"); |
|
} |
|
exit(0); |
|
} |
|
|
|
usage("unrecognized command"); |
|
exit(1); |
|
} |
|
|
|
int commander_thread_main(int argc, char *argv[]) |
|
{ |
|
/* not yet initialized */ |
|
commander_initialized = false; |
|
|
|
/* welcome user */ |
|
printf("[commander] I am in command now!\n"); |
|
|
|
/* pthreads for command and subsystem info handling */ |
|
pthread_t command_handling_thread; |
|
pthread_t subsystem_info_thread; |
|
|
|
/* initialize */ |
|
if (led_init() != 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to initialize leds\n"); |
|
} |
|
|
|
if (buzzer_init() != 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to initialize buzzer\n"); |
|
} |
|
|
|
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); |
|
|
|
if (mavlink_fd < 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to open MAVLink log stream, start mavlink app first.\n"); |
|
} |
|
|
|
/* make sure we are in preflight state */ |
|
memset(¤t_status, 0, sizeof(current_status)); |
|
current_status.state_machine = SYSTEM_STATE_PREFLIGHT; |
|
current_status.flag_system_armed = false; |
|
|
|
/* advertise to ORB */ |
|
stat_pub = orb_advertise(ORB_ID(vehicle_status), ¤t_status); |
|
/* publish current state machine */ |
|
state_machine_publish(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
if (stat_pub < 0) { |
|
printf("[commander] ERROR: orb_advertise for topic vehicle_status failed.\n"); |
|
exit(ERROR); |
|
} |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] system is running"); |
|
|
|
/* create pthreads */ |
|
pthread_attr_t command_handling_attr; |
|
pthread_attr_init(&command_handling_attr); |
|
pthread_attr_setstacksize(&command_handling_attr, 4096); |
|
pthread_create(&command_handling_thread, &command_handling_attr, command_handling_loop, NULL); |
|
|
|
pthread_attr_t subsystem_info_attr; |
|
pthread_attr_init(&subsystem_info_attr); |
|
pthread_attr_setstacksize(&subsystem_info_attr, 2048); |
|
pthread_create(&subsystem_info_thread, &subsystem_info_attr, orb_receive_loop, NULL); |
|
|
|
/* Start monitoring loop */ |
|
uint16_t counter = 0; |
|
uint8_t flight_env; |
|
|
|
/* Initialize to 3.0V to make sure the low-pass loads below valid threshold */ |
|
float battery_voltage = 12.0f; |
|
bool battery_voltage_valid = true; |
|
bool low_battery_voltage_actions_done = false; |
|
bool critical_battery_voltage_actions_done = false; |
|
uint8_t low_voltage_counter = 0; |
|
uint16_t critical_voltage_counter = 0; |
|
int16_t mode_switch_rc_value; |
|
float bat_remain = 1.0f; |
|
|
|
uint16_t stick_off_counter = 0; |
|
uint16_t stick_on_counter = 0; |
|
|
|
float hdop = 65535.0f; |
|
|
|
int gps_quality_good_counter = 0; |
|
|
|
/* Subscribe to RC data */ |
|
int rc_sub = orb_subscribe(ORB_ID(rc_channels)); |
|
struct rc_channels_s rc; |
|
memset(&rc, 0, sizeof(rc)); |
|
|
|
int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); |
|
struct vehicle_gps_position_s gps; |
|
memset(&gps, 0, sizeof(gps)); |
|
|
|
int sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s sensors; |
|
memset(&sensors, 0, sizeof(sensors)); |
|
|
|
// uint8_t vehicle_state_previous = current_status.state_machine; |
|
float voltage_previous = 0.0f; |
|
|
|
uint64_t last_idle_time = 0; |
|
|
|
/* now initialized */ |
|
commander_initialized = true; |
|
|
|
uint64_t start_time = hrt_absolute_time(); |
|
|
|
while (!thread_should_exit) { |
|
|
|
/* Get current values */ |
|
orb_copy(ORB_ID(rc_channels), rc_sub, &rc); |
|
orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps); |
|
orb_copy(ORB_ID(sensor_combined), sensor_sub, &sensors); |
|
|
|
battery_voltage = sensors.battery_voltage_v; |
|
battery_voltage_valid = sensors.battery_voltage_valid; |
|
|
|
/* |
|
* Only update battery voltage estimate if voltage is |
|
* valid and system has been running for two and a half seconds |
|
*/ |
|
if (battery_voltage_valid && (hrt_absolute_time() - start_time > 2500000)) { |
|
bat_remain = battery_remaining_estimate_voltage(3, BAT_CHEM_LITHIUM_POLYMERE, battery_voltage); |
|
} |
|
|
|
/* Slow but important 8 Hz checks */ |
|
if (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 8) == 0) { |
|
/* toggle activity (blue) led at 1 Hz in standby, 10 Hz in armed mode */ |
|
if ((current_status.state_machine == SYSTEM_STATE_GROUND_READY || |
|
current_status.state_machine == SYSTEM_STATE_AUTO || |
|
current_status.state_machine == SYSTEM_STATE_MANUAL)) { |
|
/* armed */ |
|
led_toggle(LED_BLUE); |
|
|
|
} else if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { |
|
/* not armed */ |
|
led_toggle(LED_BLUE); |
|
} |
|
|
|
/* toggle error led at 5 Hz in HIL mode */ |
|
if (current_status.flag_hil_enabled) { |
|
/* hil enabled */ |
|
led_toggle(LED_AMBER); |
|
|
|
} else if (bat_remain < 0.3f && (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT)) { |
|
/* toggle error (red) at 5 Hz on low battery or error */ |
|
led_toggle(LED_AMBER); |
|
|
|
} else { |
|
// /* Constant error indication in standby mode without GPS */ |
|
// if (!current_status.gps_valid) { |
|
// led_on(LED_AMBER); |
|
|
|
// } else { |
|
// led_off(LED_AMBER); |
|
// } |
|
} |
|
|
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { |
|
/* compute system load */ |
|
uint64_t interval_runtime = system_load.tasks[0].total_runtime - last_idle_time; |
|
|
|
if (last_idle_time > 0) |
|
current_status.load = 1000 - (interval_runtime / 1000); //system load is time spent in non-idle |
|
|
|
last_idle_time = system_load.tasks[0].total_runtime; |
|
} |
|
} |
|
|
|
// // XXX Export patterns and threshold to parameters |
|
/* Trigger audio event for low battery */ |
|
if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 0)) { |
|
/* For less than 10%, start be really annoying at 5 Hz */ |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, 3); |
|
|
|
} else if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 2)) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 0)) { |
|
/* For less than 20%, start be slightly annoying at 1 Hz */ |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, 2); |
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 2)) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
} |
|
|
|
/* Check battery voltage */ |
|
/* write to sys_status */ |
|
current_status.voltage_battery = battery_voltage; |
|
|
|
/* if battery voltage is getting lower, warn using buzzer, etc. */ |
|
if (battery_voltage_valid && (bat_remain < 0.15f /* XXX MAGIC NUMBER */) && (false == low_battery_voltage_actions_done)) { //TODO: add filter, or call emergency after n measurements < VOLTAGE_BATTERY_MINIMAL_MILLIVOLTS |
|
|
|
if (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT) { |
|
low_battery_voltage_actions_done = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] WARNING! LOW BATTERY!"); |
|
} |
|
|
|
low_voltage_counter++; |
|
} |
|
|
|
/* Critical, this is rather an emergency, kill signal to sdlog and change state machine */ |
|
else if (battery_voltage_valid && (bat_remain < 0.1f /* XXX MAGIC NUMBER */) && (false == critical_battery_voltage_actions_done && true == low_battery_voltage_actions_done)) { |
|
if (critical_voltage_counter > CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT) { |
|
critical_battery_voltage_actions_done = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] EMERGENCY! CIRITICAL BATTERY!"); |
|
state_machine_emergency(stat_pub, ¤t_status, mavlink_fd); |
|
} |
|
|
|
critical_voltage_counter++; |
|
|
|
} else { |
|
low_voltage_counter = 0; |
|
critical_voltage_counter = 0; |
|
} |
|
|
|
/* End battery voltage check */ |
|
|
|
/* Check if last transition deserved an audio event */ |
|
#warning This code depends on state that is no longer? maintained |
|
#if 0 |
|
trigger_audio_alarm(vehicle_mode_previous, vehicle_state_previous, current_status.mode, current_status.state_machine); |
|
#endif |
|
|
|
/* only check gps fix if we are outdoor */ |
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_OUTDOOR) { |
|
// |
|
// hdop = (float)(gps.eph) / 100.0f; |
|
// |
|
// /* check if gps fix is ok */ |
|
// if (gps.fix_type == GPS_FIX_TYPE_3D) { //TODO: is 2d-fix ok? //see http://en.wikipedia.org/wiki/Dilution_of_precision_%28GPS%29 |
|
// |
|
// if (gotfix_counter >= GPS_GOTFIX_COUNTER_REQUIRED) { //TODO: add also a required time? |
|
// update_state_machine_got_position_fix(stat_pub, ¤t_status); |
|
// gotfix_counter = 0; |
|
// } else { |
|
// gotfix_counter++; |
|
// } |
|
// nofix_counter = 0; |
|
// |
|
// if (hdop < 5.0f) { //TODO: this should be a parameter |
|
// if (gps_quality_good_counter > GPS_QUALITY_GOOD_COUNTER_LIMIT) { |
|
// current_status.gps_valid = true;//--> position estimator can use the gps measurements |
|
// } |
|
// |
|
// gps_quality_good_counter++; |
|
// |
|
// |
|
//// if(counter%10 == 0)//for testing only |
|
//// printf("gps_quality_good_counter = %u\n", gps_quality_good_counter);//for testing only |
|
// |
|
// } else { |
|
// gps_quality_good_counter = 0; |
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements |
|
// } |
|
// |
|
// } else { |
|
// gps_quality_good_counter = 0; |
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements |
|
// |
|
// if (nofix_counter > GPS_NOFIX_COUNTER_LIMIT) { //TODO: add also a timer limit? |
|
// update_state_machine_no_position_fix(stat_pub, ¤t_status); |
|
// nofix_counter = 0; |
|
// } else { |
|
// nofix_counter++; |
|
// } |
|
// gotfix_counter = 0; |
|
// } |
|
// |
|
// } |
|
// |
|
// |
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_TESTING) //simulate position fix for quick indoor tests |
|
//update_state_machine_got_position_fix(stat_pub, ¤t_status, mavlink_fd); |
|
/* end: check gps */ |
|
|
|
|
|
/* Start RC state check */ |
|
bool prev_lost = current_status.rc_signal_lost; |
|
|
|
if (rc.chan_count > 4 && (hrt_absolute_time() - rc.timestamp) < 100000) { |
|
|
|
/* quadrotor specific logic - check against system type in the future */ |
|
|
|
int16_t rc_yaw_scale = rc.chan[rc.function[YAW]].scale; |
|
int16_t rc_throttle_scale = rc.chan[rc.function[THROTTLE]].scale; |
|
int16_t mode_switch_rc_value = rc.chan[rc.function[OVERRIDE]].scale; |
|
/* Check the value of the rc channel of the mode switch */ |
|
mode_switch_rc_value = rc.chan[rc.function[OVERRIDE]].scale; |
|
|
|
/* check if left stick is in lower left position --> switch to standby state */ |
|
if (rc_yaw_scale < -STICK_ON_OFF_LIMIT && rc_throttle_scale < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values |
|
if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) { |
|
update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd); |
|
stick_on_counter = 0; |
|
|
|
} else { |
|
stick_off_counter++; |
|
stick_on_counter = 0; |
|
} |
|
} |
|
|
|
/* check if left stick is in lower right position --> arm */ |
|
if (rc_yaw_scale > STICK_ON_OFF_LIMIT && rc_throttle_scale < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values |
|
if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) { |
|
update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd); |
|
stick_on_counter = 0; |
|
|
|
} else { |
|
stick_on_counter++; |
|
stick_off_counter = 0; |
|
} |
|
} |
|
//printf("RC: y:%i/t:%i s:%i chans: %i\n", rc_yaw_scale, rc_throttle_scale, mode_switch_rc_value, rc.chan_count); |
|
|
|
if (mode_switch_rc_value > STICK_ON_OFF_LIMIT) { |
|
update_state_machine_mode_manual(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
} else if (mode_switch_rc_value < -STICK_ON_OFF_LIMIT) { |
|
update_state_machine_mode_auto(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
} else { |
|
update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd); |
|
} |
|
|
|
/* Publish RC signal */ |
|
|
|
|
|
/* handle the case where RC signal was regained */ |
|
if (current_status.rc_signal_lost) mavlink_log_critical(mavlink_fd, "[commander] RECOVERY - RC SIGNAL GAINED!"); |
|
current_status.rc_signal_lost = false; |
|
current_status.rc_signal_lost_interval = 0; |
|
|
|
} else { |
|
static uint64_t last_print_time = 0; |
|
/* print error message for first RC glitch and then every 5 s / 5000 ms) */ |
|
if (!current_status.rc_signal_lost || ((hrt_absolute_time() - last_print_time) > 5000000)) { |
|
mavlink_log_critical(mavlink_fd, "[commander] CRITICAL - NO REMOTE SIGNAL!"); |
|
last_print_time = hrt_absolute_time(); |
|
} |
|
/* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */ |
|
current_status.rc_signal_cutting_off = true; |
|
current_status.rc_signal_lost_interval = hrt_absolute_time() - rc.timestamp; |
|
|
|
/* if the RC signal is gone for a full second, consider it lost */ |
|
if (current_status.rc_signal_lost_interval > 1000000) current_status.rc_signal_lost = true; |
|
} |
|
|
|
/* Check if this is the first loss or first gain*/ |
|
if ((!prev_lost && current_status.rc_signal_lost) || |
|
prev_lost && !current_status.rc_signal_lost) { |
|
/* publish rc lost */ |
|
publish_armed_status(¤t_status); |
|
} |
|
|
|
/* End mode switch */ |
|
|
|
/* END RC state check */ |
|
|
|
|
|
current_status.counter++; |
|
current_status.timestamp = hrt_absolute_time(); |
|
|
|
|
|
/* If full run came back clean, transition to standby */ |
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT && |
|
current_status.flag_preflight_gyro_calibration == false && |
|
current_status.flag_preflight_mag_calibration == false && |
|
current_status.flag_preflight_accel_calibration == false) { |
|
/* All ok, no calibration going on, go to standby */ |
|
do_state_update(stat_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
} |
|
|
|
/* publish at least with 1 Hz */ |
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { |
|
orb_publish(ORB_ID(vehicle_status), stat_pub, ¤t_status); |
|
} |
|
|
|
/* Store old modes to detect and act on state transitions */ |
|
voltage_previous = current_status.voltage_battery; |
|
|
|
fflush(stdout); |
|
counter++; |
|
usleep(COMMANDER_MONITORING_INTERVAL); |
|
} |
|
|
|
/* wait for threads to complete */ |
|
pthread_join(command_handling_thread, NULL); |
|
pthread_join(subsystem_info_thread, NULL); |
|
|
|
/* close fds */ |
|
led_deinit(); |
|
buzzer_deinit(); |
|
close(rc_sub); |
|
close(gps_sub); |
|
close(sensor_sub); |
|
|
|
printf("[commander] exiting..\n"); |
|
fflush(stdout); |
|
|
|
thread_running = false; |
|
|
|
return 0; |
|
} |
|
|
|
|