You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
583 lines
31 KiB
583 lines
31 KiB
#!/usr/bin/env python |
|
# -*- coding: utf-8 -*- |
|
import argparse |
|
import os |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
""" |
|
Performs a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory |
|
Generates and saves histogram plots for the meta data in population_data.pdf |
|
Generates and saves population summary data in population_data.csv |
|
""" |
|
|
|
parser = argparse.ArgumentParser(description='Perform a composite analysis of ekf log analysis meta data for all .ulg.csv files in the specified directory') |
|
parser.add_argument("directory_path") |
|
|
|
def is_valid_directory(parser, arg): |
|
if os.path.isdir(arg): |
|
# Directory exists so return the directory |
|
return arg |
|
else: |
|
parser.error('The directory {} does not exist'.format(arg)) |
|
|
|
args = parser.parse_args() |
|
metadata_directory = args.directory_path |
|
|
|
# Run the metadata analsyis tool to generate population statistics |
|
# Loop through the csv files in the directory and load the metadata into a nested dictionary |
|
print("\n"+"analysing all .ulog.csv files in "+metadata_directory) |
|
population_data = {} |
|
for filename in os.listdir(metadata_directory): |
|
if filename.endswith(".mdat.csv"): |
|
print("loading "+filename) |
|
# get the dictionary of fail and warning test thresholds from a csv file |
|
file = open(metadata_directory+"/"+filename) |
|
single_log_data = { } # meta data dictionary for a single log |
|
for line in file: |
|
x = line.split(",") |
|
a=x[0] |
|
b=x[1] |
|
c=x[2] |
|
try: |
|
single_log_data[a]=float(b) |
|
except: |
|
single_log_data[a]=b |
|
file.close() |
|
population_data[filename]=single_log_data |
|
|
|
# # print out the check levels |
|
# print('\n'+'The following metadata loaded from '+filename+' were used'+'\n') |
|
# val = population_data.get(filename, {}).get('imu_hfdang_mean') |
|
# print(val) |
|
|
|
# Open pdf file for plotting |
|
from matplotlib.backends.backend_pdf import PdfPages |
|
output_plot_filename = "population_data.pdf" |
|
pp = PdfPages(metadata_directory+"/"+output_plot_filename) |
|
|
|
# get statistics for the population |
|
population_results = { |
|
'master_warning_pct':[float('NaN'),'Percentage of logs with warnings'], |
|
'master_fail_pct':[float('NaN'),'Percentage of logs with fails'], |
|
'mag_warning_pct':[float('NaN'),'Percentage of logs with magnetometer sensor warnings'], |
|
'mag_fail_pct':[float('NaN'),'Percentage of logs with magnetometer sensor fails'], |
|
'yaw_warning_pct':[float('NaN'),'Percentage of logs with yaw sensor warnings'], |
|
'yaw_fail_pct':[float('NaN'),'Percentage of logs with yaw sensor fails'], |
|
'vel_warning_pct':[float('NaN'),'Percentage of logs with velocity sensor warnings'], |
|
'vel_fail_pct':[float('NaN'),'Percentage of logs with velocity sensor fails'], |
|
'pos_warning_pct':[float('NaN'),'Percentage of logs with position sensor warnings'], |
|
'pos_fail_pct':[float('NaN'),'Percentage of logs with position sensor fails'], |
|
'hgt_warning_pct':[float('NaN'),'Percentage of logs with height sensor warnings'], |
|
'hgt_fail_pct':[float('NaN'),'Percentage of logs with height sensor fails'], |
|
'hagl_warning_pct':[float('NaN'),'Percentage of logs with height above ground sensor warnings'], |
|
'hagl_fail_pct':[float('NaN'),'Percentage of logs with height above ground sensor fails'], |
|
'tas_warning_pct':[float('NaN'),'Percentage of logs with airspeed sensor warnings'], |
|
'tas_fail_pct':[float('NaN'),'Percentage of logs with airspeed ground sensor fails'], |
|
'mag_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the magnetic field sensor innovation consistency test ratio'], |
|
'mag_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the magnetic field sensor innovation consistency test ratio'], |
|
'vel_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the velocity sensor innovation consistency test ratio'], |
|
'vel_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the velocity sensor innovation consistency test ratio'], |
|
'pos_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the position sensor innovation consistency test ratio'], |
|
'pos_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the position sensor innovation consistency test ratio'], |
|
'hgt_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height sensor innovation consistency test ratio'], |
|
'hgt_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height sensor innovation consistency test ratio'], |
|
'tas_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the airspeed sensor innovation consistency test ratio'], |
|
'tas_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the airspeed sensor innovation consistency test ratio'], |
|
'hagl_test_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the height above ground sensor innovation consistency test ratio'], |
|
'hagl_test_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the height above ground sensor innovation consistency test ratio'], |
|
'ofx_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the X axis optical flow sensor'], |
|
'ofy_fail_pct_avg':[float('NaN'),'The mean percentage of innovation test fails for the Y axis optical flow sensor'], |
|
'imu_coning_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU delta angle coning vibration level (mrad)'], |
|
'imu_coning_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta angle coning vibration level (mrad)'], |
|
'imu_hfdang_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta angle vibration level (mrad)'], |
|
'imu_hfdang_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta angle vibration level (mrad)'], |
|
'imu_hfdvel_max_avg':[float('NaN'),'The mean of the maximum in-flight values of the IMU high frequency delta velocity vibration level (m/s)'], |
|
'imu_hfdvel_mean_avg':[float('NaN'),'The mean of the mean in-flight value of the IMU delta high frequency delta velocity vibration level (m/s)'], |
|
'obs_ang_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer angular tracking error magnitude (mrad)'], |
|
'obs_vel_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer velocity tracking error magnitude (m/s)'], |
|
'obs_pos_median_avg':[float('NaN'),'The mean of the median in-flight value of the output observer position tracking error magnitude (m)'], |
|
} |
|
|
|
# get population summary statistics |
|
found_keys = population_data.keys() |
|
|
|
# master status |
|
result = [population_data[k].get('master_status') for k in found_keys] |
|
population_results['master_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['master_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# magnetometer sensor |
|
result = [population_data[k].get('mag_sensor_status') for k in found_keys] |
|
population_results['mag_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['mag_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# yaw sensor |
|
result = [population_data[k].get('yaw_sensor_status') for k in found_keys] |
|
population_results['yaw_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['yaw_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# velocity sensor |
|
result = [population_data[k].get('vel_sensor_status') for k in found_keys] |
|
population_results['vel_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['vel_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# position sensor |
|
result = [population_data[k].get('pos_sensor_status') for k in found_keys] |
|
population_results['pos_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['pos_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# height sensor |
|
result = [population_data[k].get('hgt_sensor_status') for k in found_keys] |
|
population_results['hgt_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['hgt_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# height above ground sensor |
|
result = [population_data[k].get('hagl_sensor_status') for k in found_keys] |
|
population_results['hagl_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['hagl_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# height above ground sensor |
|
result = [population_data[k].get('tas_sensor_status') for k in found_keys] |
|
population_results['tas_warning_pct'][0] = 100.0 * result.count('Warning') / len(result) |
|
population_results['tas_fail_pct'][0] = 100.0 * result.count('Fail') / len(result) |
|
|
|
# Mean and max innovation test levels |
|
# Magnetometer |
|
temp = np.asarray([population_data[k].get('mag_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('mag_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['mag_test_max_avg'][0] = np.mean(result1) |
|
population_results['mag_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(1,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Maximum") |
|
plt.xlabel("mag_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Magnetometer Innovation Test Ratio Mean") |
|
plt.xlabel("mag_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(1) |
|
|
|
# Velocity Sensor (GPS) |
|
temp = np.asarray([population_data[k].get('vel_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('vel_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['vel_test_max_avg'][0] = np.mean(result1) |
|
population_results['vel_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(2,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Maximum") |
|
plt.xlabel("vel_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Velocity Innovation Test Ratio Mean") |
|
plt.xlabel("vel_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(2) |
|
|
|
# Position Sensor (GPS or external vision) |
|
temp = np.asarray([population_data[k].get('pos_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('pos_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['pos_test_max_avg'][0] = np.mean(result1) |
|
population_results['pos_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(3,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Position Innovation Test Ratio Maximum") |
|
plt.xlabel("pos_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Position Innovation Test Ratio Mean") |
|
plt.xlabel("pos_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(3) |
|
|
|
# Height Sensor |
|
temp = np.asarray([population_data[k].get('hgt_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('hgt_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['hgt_test_max_avg'][0] = np.mean(result1) |
|
population_results['hgt_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(4,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Height Innovation Test Ratio Maximum") |
|
plt.xlabel("pos_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Height Innovation Test Ratio Mean") |
|
plt.xlabel("pos_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(4) |
|
|
|
# Airspeed Sensor |
|
temp = np.asarray([population_data[k].get('tas_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('tas_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['tas_test_max_avg'][0] = np.mean(result1) |
|
population_results['tas_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(5,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Maximum") |
|
plt.xlabel("tas_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Airspeed Innovation Test Ratio Mean") |
|
plt.xlabel("tas_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(5) |
|
|
|
# Height Above Ground Sensor |
|
temp = np.asarray([population_data[k].get('hagl_test_max') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('hagl_test_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['hagl_test_max_avg'][0] = np.mean(result1) |
|
population_results['hagl_test_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(6,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Maximum") |
|
plt.xlabel("hagl_test_max") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - HAGL Innovation Test Ratio Mean") |
|
plt.xlabel("hagl_test_mean") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(6) |
|
|
|
# Optical Flow Sensor |
|
temp = np.asarray([population_data[k].get('ofx_fail_percentage') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('ofy_fail_percentage') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['ofx_fail_pct_avg'][0] = np.mean(result1) |
|
population_results['ofy_fail_pct_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(7,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - Optical Flow X Axis Fail Percentage") |
|
plt.xlabel("ofx_fail_percentage") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - Optical Flow Y Axis Fail Percentage") |
|
plt.xlabel("ofy_fail_percentage") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(7) |
|
|
|
# IMU coning vibration levels |
|
temp = np.asarray([population_data[k].get('imu_coning_peak') for k in found_keys]) |
|
result1 = 1000.0 * temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('imu_coning_mean') for k in found_keys]) |
|
result2 = 1000.0 * temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['imu_coning_max_avg'][0] = np.mean(result1) |
|
population_results['imu_coning_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(8,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - IMU Coning Vibration Peak") |
|
plt.xlabel("imu_coning_max (mrad)") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - IMU Coning Vibration Mean") |
|
plt.xlabel("imu_coning_mean (mrad)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(8) |
|
|
|
# IMU high frequency delta angle vibration levels |
|
temp = np.asarray([population_data[k].get('imu_hfdang_peak') for k in found_keys]) |
|
result1 = 1000.0 * temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('imu_hfdang_mean') for k in found_keys]) |
|
result2 = 1000.0 * temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['imu_hfdang_max_avg'][0] = np.mean(result1) |
|
population_results['imu_hfdang_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(9,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Peak") |
|
plt.xlabel("imu_hfdang_max (mrad)") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - IMU HF Delta Angle Vibration Mean") |
|
plt.xlabel("imu_hfdang_mean (mrad)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(9) |
|
|
|
# IMU high frequency delta velocity vibration levels |
|
temp = np.asarray([population_data[k].get('imu_hfdvel_peak') for k in found_keys]) |
|
result1 = temp[np.isfinite(temp)] |
|
temp = np.asarray([population_data[k].get('imu_hfdvel_mean') for k in found_keys]) |
|
result2 = temp[np.isfinite(temp)] |
|
|
|
if (len(result1) > 0 and len(result2) > 0): |
|
population_results['imu_hfdvel_max_avg'][0] = np.mean(result1) |
|
population_results['imu_hfdvel_mean_avg'][0] = np.mean(result2) |
|
|
|
plt.figure(10,figsize=(20,13)) |
|
|
|
plt.subplot(2,1,1) |
|
plt.hist(result1) |
|
plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Peak") |
|
plt.xlabel("imu_hfdvel_max (m/s)") |
|
plt.ylabel("Frequency") |
|
|
|
plt.subplot(2,1,2) |
|
plt.hist(result2) |
|
plt.title("Gaussian Histogram - IMU HF Delta Velocity Vibration Mean") |
|
plt.xlabel("imu_hfdvel_mean (m/s)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(10) |
|
|
|
# Output Observer Angular Tracking |
|
temp = np.asarray([population_data[k].get('output_obs_ang_err_median') for k in found_keys]) |
|
result = 1000.0 * temp[np.isfinite(temp)] |
|
|
|
if (len(result) > 0): |
|
population_results['obs_ang_median_avg'][0] = np.mean(result) |
|
|
|
plt.figure(11,figsize=(20,13)) |
|
|
|
plt.hist(result) |
|
plt.title("Gaussian Histogram - Output Observer Angular Tracking Error Median") |
|
plt.xlabel("output_obs_ang_err_median (mrad)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(11) |
|
|
|
# Output Observer Velocity Tracking |
|
temp = np.asarray([population_data[k].get('output_obs_vel_err_median') for k in found_keys]) |
|
result = temp[np.isfinite(temp)] |
|
|
|
if (len(result) > 0): |
|
population_results['obs_vel_median_avg'][0] = np.mean(result) |
|
|
|
plt.figure(12,figsize=(20,13)) |
|
|
|
plt.hist(result) |
|
plt.title("Gaussian Histogram - Output Observer Velocity Tracking Error Median") |
|
plt.xlabel("output_obs_ang_err_median (m/s)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(12) |
|
|
|
# Output Observer Position Tracking |
|
temp = np.asarray([population_data[k].get('output_obs_pos_err_median') for k in found_keys]) |
|
result = temp[np.isfinite(temp)] |
|
|
|
if (len(result) > 0): |
|
population_results['obs_pos_median_avg'][0] = np.mean(result) |
|
|
|
plt.figure(13,figsize=(20,13)) |
|
|
|
plt.hist(result) |
|
plt.title("Gaussian Histogram - Output Observer Position Tracking Error Median") |
|
plt.xlabel("output_obs_ang_err_median (m)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(13) |
|
|
|
# IMU delta angle bias |
|
temp = np.asarray([population_data[k].get('imu_dang_bias_median') for k in found_keys]) |
|
result = temp[np.isfinite(temp)] |
|
|
|
if (len(result) > 0): |
|
plt.figure(14,figsize=(20,13)) |
|
|
|
plt.hist(result) |
|
plt.title("Gaussian Histogram - IMU Delta Angle Bias Median") |
|
plt.xlabel("imu_dang_bias_median (rad)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(14) |
|
|
|
# IMU delta velocity bias |
|
temp = np.asarray([population_data[k].get('imu_dvel_bias_median') for k in found_keys]) |
|
result = temp[np.isfinite(temp)] |
|
|
|
if (len(result) > 0): |
|
plt.figure(15,figsize=(20,13)) |
|
|
|
plt.hist(result) |
|
plt.title("Gaussian Histogram - IMU Delta Velocity Bias Median") |
|
plt.xlabel("imu_dvel_bias_median (m/s)") |
|
plt.ylabel("Frequency") |
|
|
|
pp.savefig() |
|
plt.close(15) |
|
|
|
# close the pdf file |
|
pp.close() |
|
print('Population summary plots saved in population_data.pdf') |
|
|
|
# don't display to screen |
|
#plt.show() |
|
|
|
# clase all figures |
|
plt.close("all") |
|
|
|
# write metadata to a .csv file |
|
population_results_filename = metadata_directory + "/population_data.csv" |
|
file = open(population_results_filename,"w") |
|
|
|
file.write("name,value,description\n") |
|
|
|
# loop through the dictionary and write each entry on a separate row, with data comma separated |
|
# save data in alphabetical order |
|
key_list = list(population_results.keys()) |
|
key_list.sort() |
|
for key in key_list: |
|
file.write(key+","+str(population_results[key][0])+","+population_results[key][1]+"\n") |
|
|
|
file.close() |
|
|
|
print('Population summary data saved in population_data.csv') |
|
|
|
single_log_results = { |
|
'filter_faults_max':[float('NaN'),'Largest recorded value of the filter internal fault bitmask. Should always be zero.'], |
|
'hagl_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height above ground sensor innovation consistency test.'], |
|
'hagl_percentage_amber':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 0.5.'], |
|
'hagl_percentage_red':[float('NaN'),'The percentage of in-flight height above ground sensor innovation consistency test values > 1.0.'], |
|
'hagl_sensor_status':['Pass','Height above ground sensor check summary. This sensor data is normally sourced from a rangefinder sensor. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'hagl_test_max':[float('NaN'),'The maximum in-flight value of the height above ground sensor innovation consistency test ratio.'], |
|
'hagl_test_mean':[float('NaN'),'The mean in-flight value of the height above ground sensor innovation consistency test ratio.'], |
|
'hgt_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the height sensor innovation consistency test.'], |
|
'hgt_percentage_amber':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 0.5.'], |
|
'hgt_percentage_red':[float('NaN'),'The percentage of in-flight height sensor innovation consistency test values > 1.0.'], |
|
'hgt_sensor_status':['Pass','Height sensor check summary. This sensor data can be sourced from either Baro, GPS, range fidner or external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'hgt_test_max':[float('NaN'),'The maximum in-flight value of the height sensor innovation consistency test ratio.'], |
|
'hgt_test_mean':[float('NaN'),'The mean in-flight value of the height sensor innovation consistency test ratio.'], |
|
'imu_coning_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle coning vibration metric (rad)'], |
|
'imu_coning_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle coning vibration metric (rad)'], |
|
'imu_hfdang_mean':[float('NaN'),'Mean in-flight value of the IMU delta angle high frequency vibration metric (rad)'], |
|
'imu_hfdang_peak':[float('NaN'),'Peak in-flight value of the IMU delta angle high frequency vibration metric (rad)'], |
|
'imu_hfdvel_mean':[float('NaN'),'Mean in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], |
|
'imu_hfdvel_peak':[float('NaN'),'Peak in-flight value of the IMU delta velocity high frequency vibration metric (m/s)'], |
|
'imu_sensor_status':['Pass','IMU sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'in_air_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transtioned into in-air mode. Set to a nan if a transition event is not detected.'], |
|
'mag_percentage_amber':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 0.5.'], |
|
'mag_percentage_red':[float('NaN'),'The percentage of in-flight consolidated magnetic field sensor innovation consistency test values > 1.0.'], |
|
'mag_sensor_status':['Pass','Magnetometer sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'mag_test_max':[float('NaN'),'The maximum in-flight value of the magnetic field sensor innovation consistency test ratio.'], |
|
'mag_test_mean':[float('NaN'),'The mean in-flight value of the magnetic field sensor innovation consistency test ratio.'], |
|
'magx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the X-axis magnetic field sensor innovation consistency test.'], |
|
'magy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Y-axis magnetic field sensor innovation consistency test.'], |
|
'magz_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the Z-axis magnetic field sensor innovation consistency test.'], |
|
'master_status':['Pass','Master check status which can be either Pass Warning or Fail. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'ofx_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor X-axis innovation consistency test.'], |
|
'ofy_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the optical flow sensor Y-axis innovation consistency test.'], |
|
'on_ground_transition_time':[float('NaN'),'The time in seconds measured from startup that the EKF transitioned out of in-air mode. Set to a nan if a transition event is not detected.'], |
|
'output_obs_ang_err_median':[float('NaN'),'Median in-flight value of the output observer angular error (rad)'], |
|
'output_obs_pos_err_median':[float('NaN'),'Median in-flight value of the output observer position error (m)'], |
|
'output_obs_vel_err_median':[float('NaN'),'Median in-flight value of the output observer velocity error (m/s)'], |
|
'pos_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], |
|
'pos_percentage_amber':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 0.5.'], |
|
'pos_percentage_red':[float('NaN'),'The percentage of in-flight position sensor consolidated innovation consistency test values > 1.0.'], |
|
'pos_sensor_status':['Pass','Position sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'pos_test_max':[float('NaN'),'The maximum in-flight value of the position sensor consolidated innovation consistency test ratio.'], |
|
'pos_test_mean':[float('NaN'),'The mean in-flight value of the position sensor consolidated innovation consistency test ratio.'], |
|
'tas_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the airspeed sensor innovation consistency test.'], |
|
'tas_percentage_amber':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 0.5.'], |
|
'tas_percentage_red':[float('NaN'),'The percentage of in-flight airspeed sensor innovation consistency test values > 1.0.'], |
|
'tas_sensor_status':['Pass','Airspeed sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'tas_test_max':[float('NaN'),'The maximum in-flight value of the airspeed sensor innovation consistency test ratio.'], |
|
'tas_test_mean':[float('NaN'),'The mean in-flight value of the airspeed sensor innovation consistency test ratio.'], |
|
'tilt_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the tilt alignment. A nan value indicates that the alignment had completed before logging started or alignment did not complete.'], |
|
'vel_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the velocity sensor consolidated innovation consistency test.'], |
|
'vel_percentage_amber':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 0.5.'], |
|
'vel_percentage_red':[float('NaN'),'The percentage of in-flight velocity sensor consolidated innovation consistency test values > 1.0.'], |
|
'vel_sensor_status':['Pass','Velocity sensor check summary. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
'vel_test_max':[float('NaN'),'The maximum in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], |
|
'vel_test_mean':[float('NaN'),'The mean in-flight value of the velocity sensor consolidated innovation consistency test ratio.'], |
|
'yaw_align_time':[float('NaN'),'The time in seconds measured from startup that the EKF completed the yaw alignment.'], |
|
'yaw_fail_percentage':[float('NaN'),'The percentage of in-flight recorded failure events for the yaw sensor innovation consistency test.'], |
|
'yaw_sensor_status':['Pass','Yaw sensor check summary. This sensor data can be sourced from the magnetometer or an external vision system. A Fail result indicates a significant error that caused a significant reduction in vehicle navigation performance was detected. A Warning result indicates that error levels higher than normal were detected but these errors did not significantly impact navigation performance. A Pass result indicates that no amonalies were detected and no further investigation is required'], |
|
}
|
|
|