You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

246 lines
9.7 KiB

/****************************************************************************
*
* Copyright (c) 2019 ECL Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* Test the external vision functionality
* @author Kamil Ritz <ka.ritz@hotmail.com>
*/
#include <gtest/gtest.h>
#include "EKF/ekf.h"
#include "sensor_simulator/sensor_simulator.h"
#include "sensor_simulator/ekf_wrapper.h"
#include "test_helper/reset_logging_checker.h"
class EkfExternalVisionTest : public ::testing::Test {
public:
EkfExternalVisionTest(): ::testing::Test(),
_ekf{std::make_shared<Ekf>()},
_sensor_simulator(_ekf),
_ekf_wrapper(_ekf) {};
std::shared_ptr<Ekf> _ekf;
SensorSimulator _sensor_simulator;
EkfWrapper _ekf_wrapper;
// Setup the Ekf with synthetic measurements
void SetUp() override
{
_ekf->init(0);
_sensor_simulator.runSeconds(3);
}
// Use this method to clean up any memory, network etc. after each test
void TearDown() override
{
}
};
TEST_F(EkfExternalVisionTest, checkVisionFusionLogic)
{
_ekf_wrapper.enableExternalVisionPositionFusion();
_sensor_simulator.startExternalVision();
_sensor_simulator.runSeconds(2);
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
EXPECT_TRUE(_ekf->local_position_is_valid());
EXPECT_FALSE(_ekf->global_position_is_valid());
_ekf_wrapper.enableExternalVisionVelocityFusion();
_sensor_simulator.runSeconds(2);
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
EXPECT_TRUE(_ekf->local_position_is_valid());
EXPECT_FALSE(_ekf->global_position_is_valid());
_ekf_wrapper.enableExternalVisionHeadingFusion();
_sensor_simulator.runSeconds(2);
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion());
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion());
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion());
EXPECT_TRUE(_ekf->local_position_is_valid());
EXPECT_FALSE(_ekf->global_position_is_valid());
}
TEST_F(EkfExternalVisionTest, visionVelocityReset)
{
ResetLoggingChecker reset_logging_checker(_ekf);
reset_logging_checker.capturePreResetState();
const Vector3f simulated_velocity(0.3f, -1.0f, 0.4f);
_sensor_simulator._vio.setVelocity(simulated_velocity);
_ekf_wrapper.enableExternalVisionVelocityFusion();
_sensor_simulator.startExternalVision();
// Note: test duration needs to allow time for tilt alignment to complete
_sensor_simulator.runMicroseconds(2e5);
// THEN: a reset to Vision velocity should be done
// Note: velocity will drift after reset due to INAV errors so the tolerance needs to allow for this
const Vector3f estimated_velocity = _ekf->getVelocity();
EXPECT_TRUE(isEqual(estimated_velocity, simulated_velocity, 0.01f));
// AND: the reset in velocity should be saved correctly
reset_logging_checker.capturePostResetState();
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f));
}
TEST_F(EkfExternalVisionTest, visionVelocityResetWithAlignment)
{
ResetLoggingChecker reset_logging_checker(_ekf);
reset_logging_checker.capturePreResetState();
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
// Heading of drone in EKF frame is 0°
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f)));
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed());
_ekf_wrapper.enableExternalVisionAlignment();
const Vector3f simulated_velocity_in_vision_frame(0.3f, -1.0f, 0.4f);
const Vector3f simulated_velocity_in_ekf_frame =
Dcmf(vision_to_ekf) * simulated_velocity_in_vision_frame;
_sensor_simulator._vio.setVelocity(simulated_velocity_in_vision_frame);
_ekf_wrapper.enableExternalVisionVelocityFusion();
_sensor_simulator.startExternalVision();
_sensor_simulator.runMicroseconds(2e5);
// THEN: a reset to Vision velocity should be done
const Vector3f estimated_velocity_in_ekf_frame = _ekf->getVelocity();
EXPECT_TRUE(isEqual(estimated_velocity_in_ekf_frame, simulated_velocity_in_ekf_frame, 0.01f));
// And: the frame offset should be estimated correctly
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion();
EXPECT_TRUE(matrix::isEqual(vision_to_ekf.canonical(),
estimatedExternalVisionFrameOffset.canonical()));
// AND: the reset in velocity should be saved correctly
reset_logging_checker.capturePostResetState();
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1));
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f));
}
TEST_F(EkfExternalVisionTest, visionHorizontalPositionReset)
{
const Vector3f simulated_position(8.3f, -1.0f, 0.0f);
_sensor_simulator._vio.setPosition(simulated_position);
_ekf_wrapper.enableExternalVisionPositionFusion();
_sensor_simulator.startExternalVision();
_sensor_simulator.runMicroseconds(2e5);
// THEN: a reset to Vision velocity should be done
const Vector3f estimated_position = _ekf->getPosition();
EXPECT_TRUE(isEqual(estimated_position, simulated_position, 1e-5f));
}
TEST_F(EkfExternalVisionTest, visionHorizontalPositionResetWithAlignment)
{
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
// Heading of drone in EKF frame is 0°
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f)));
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed());
_ekf_wrapper.enableExternalVisionAlignment();
const Vector3f simulated_position_in_vision_frame(8.3f, -1.0f, 0.0f);
const Vector3f simulated_position_in_ekf_frame =
Dcmf(vision_to_ekf) * simulated_position_in_vision_frame;
_sensor_simulator._vio.setPosition(simulated_position_in_vision_frame);
_ekf_wrapper.enableExternalVisionPositionFusion();
_sensor_simulator.startExternalVision();
_sensor_simulator.runMicroseconds(2e5);
// THEN: a reset to Vision velocity should be done
const Vector3f estimated_position_in_ekf_frame = _ekf->getPosition();
EXPECT_TRUE(isEqual(estimated_position_in_ekf_frame, simulated_position_in_ekf_frame, 1e-2f));
}
TEST_F(EkfExternalVisionTest, visionVarianceCheck)
{
const Vector3f velVar_init = _ekf->getVelocityVariance();
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f});
_ekf_wrapper.enableExternalVisionVelocityFusion();
_sensor_simulator.startExternalVision();
_sensor_simulator.runSeconds(4);
const Vector3f velVar_new = _ekf->getVelocityVariance();
EXPECT_TRUE(velVar_new(0) > velVar_new(1));
}
TEST_F(EkfExternalVisionTest, visionAlignment)
{
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV)
// Heading of drone in EKF frame is 0°
// WHEN: Vision frame is rotate +90°. The reported heading is -90°
Quatf externalVisionFrameOffset(Eulerf(0.0f,0.0f,math::radians(90.0f)));
_sensor_simulator._vio.setOrientation(externalVisionFrameOffset.inversed());
_ekf_wrapper.enableExternalVisionAlignment();
// Simulate high uncertainty on vision x axis which is in this case
// the y EKF frame axis
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f});
_ekf_wrapper.enableExternalVisionVelocityFusion();
_sensor_simulator.startExternalVision();
const Vector3f velVar_init = _ekf->getVelocityVariance();
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001);
_sensor_simulator.runSeconds(4);
// THEN: velocity uncertainty in y should be bigger
const Vector3f velVar_new = _ekf->getVelocityVariance();
EXPECT_TRUE(velVar_new(1) > velVar_new(0));
// THEN: the frame offset should be estimated correctly
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion();
EXPECT_TRUE(matrix::isEqual(externalVisionFrameOffset.canonical(),
estimatedExternalVisionFrameOffset.canonical()));
}