You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
246 lines
9.7 KiB
246 lines
9.7 KiB
/**************************************************************************** |
|
* |
|
* Copyright (c) 2019 ECL Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* Test the external vision functionality |
|
* @author Kamil Ritz <ka.ritz@hotmail.com> |
|
*/ |
|
|
|
#include <gtest/gtest.h> |
|
#include "EKF/ekf.h" |
|
#include "sensor_simulator/sensor_simulator.h" |
|
#include "sensor_simulator/ekf_wrapper.h" |
|
#include "test_helper/reset_logging_checker.h" |
|
|
|
|
|
class EkfExternalVisionTest : public ::testing::Test { |
|
public: |
|
|
|
EkfExternalVisionTest(): ::testing::Test(), |
|
_ekf{std::make_shared<Ekf>()}, |
|
_sensor_simulator(_ekf), |
|
_ekf_wrapper(_ekf) {}; |
|
|
|
std::shared_ptr<Ekf> _ekf; |
|
SensorSimulator _sensor_simulator; |
|
EkfWrapper _ekf_wrapper; |
|
|
|
// Setup the Ekf with synthetic measurements |
|
void SetUp() override |
|
{ |
|
_ekf->init(0); |
|
_sensor_simulator.runSeconds(3); |
|
} |
|
|
|
// Use this method to clean up any memory, network etc. after each test |
|
void TearDown() override |
|
{ |
|
} |
|
}; |
|
|
|
TEST_F(EkfExternalVisionTest, checkVisionFusionLogic) |
|
{ |
|
_ekf_wrapper.enableExternalVisionPositionFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
_sensor_simulator.runSeconds(2); |
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion()); |
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion()); |
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion()); |
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid()); |
|
EXPECT_FALSE(_ekf->global_position_is_valid()); |
|
|
|
_ekf_wrapper.enableExternalVisionVelocityFusion(); |
|
_sensor_simulator.runSeconds(2); |
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion()); |
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion()); |
|
EXPECT_FALSE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion()); |
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid()); |
|
EXPECT_FALSE(_ekf->global_position_is_valid()); |
|
|
|
_ekf_wrapper.enableExternalVisionHeadingFusion(); |
|
_sensor_simulator.runSeconds(2); |
|
|
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionPositionFusion()); |
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionVelocityFusion()); |
|
EXPECT_TRUE(_ekf_wrapper.isIntendingExternalVisionHeadingFusion()); |
|
|
|
EXPECT_TRUE(_ekf->local_position_is_valid()); |
|
EXPECT_FALSE(_ekf->global_position_is_valid()); |
|
} |
|
|
|
TEST_F(EkfExternalVisionTest, visionVelocityReset) |
|
{ |
|
ResetLoggingChecker reset_logging_checker(_ekf); |
|
reset_logging_checker.capturePreResetState(); |
|
|
|
const Vector3f simulated_velocity(0.3f, -1.0f, 0.4f); |
|
|
|
_sensor_simulator._vio.setVelocity(simulated_velocity); |
|
_ekf_wrapper.enableExternalVisionVelocityFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
// Note: test duration needs to allow time for tilt alignment to complete |
|
_sensor_simulator.runMicroseconds(2e5); |
|
|
|
// THEN: a reset to Vision velocity should be done |
|
// Note: velocity will drift after reset due to INAV errors so the tolerance needs to allow for this |
|
const Vector3f estimated_velocity = _ekf->getVelocity(); |
|
EXPECT_TRUE(isEqual(estimated_velocity, simulated_velocity, 0.01f)); |
|
|
|
// AND: the reset in velocity should be saved correctly |
|
reset_logging_checker.capturePostResetState(); |
|
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1)); |
|
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1)); |
|
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f)); |
|
} |
|
|
|
TEST_F(EkfExternalVisionTest, visionVelocityResetWithAlignment) |
|
{ |
|
ResetLoggingChecker reset_logging_checker(_ekf); |
|
reset_logging_checker.capturePreResetState(); |
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV) |
|
// Heading of drone in EKF frame is 0° |
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90° |
|
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f))); |
|
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed()); |
|
_ekf_wrapper.enableExternalVisionAlignment(); |
|
|
|
const Vector3f simulated_velocity_in_vision_frame(0.3f, -1.0f, 0.4f); |
|
const Vector3f simulated_velocity_in_ekf_frame = |
|
Dcmf(vision_to_ekf) * simulated_velocity_in_vision_frame; |
|
_sensor_simulator._vio.setVelocity(simulated_velocity_in_vision_frame); |
|
_ekf_wrapper.enableExternalVisionVelocityFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
_sensor_simulator.runMicroseconds(2e5); |
|
|
|
// THEN: a reset to Vision velocity should be done |
|
const Vector3f estimated_velocity_in_ekf_frame = _ekf->getVelocity(); |
|
EXPECT_TRUE(isEqual(estimated_velocity_in_ekf_frame, simulated_velocity_in_ekf_frame, 0.01f)); |
|
// And: the frame offset should be estimated correctly |
|
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion(); |
|
EXPECT_TRUE(matrix::isEqual(vision_to_ekf.canonical(), |
|
estimatedExternalVisionFrameOffset.canonical())); |
|
|
|
// AND: the reset in velocity should be saved correctly |
|
reset_logging_checker.capturePostResetState(); |
|
EXPECT_TRUE(reset_logging_checker.isHorizontalVelocityResetCounterIncreasedBy(1)); |
|
EXPECT_TRUE(reset_logging_checker.isVerticalVelocityResetCounterIncreasedBy(1)); |
|
EXPECT_TRUE(reset_logging_checker.isVelocityDeltaLoggedCorrectly(0.01f)); |
|
} |
|
|
|
TEST_F(EkfExternalVisionTest, visionHorizontalPositionReset) |
|
{ |
|
const Vector3f simulated_position(8.3f, -1.0f, 0.0f); |
|
|
|
_sensor_simulator._vio.setPosition(simulated_position); |
|
_ekf_wrapper.enableExternalVisionPositionFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
_sensor_simulator.runMicroseconds(2e5); |
|
|
|
// THEN: a reset to Vision velocity should be done |
|
const Vector3f estimated_position = _ekf->getPosition(); |
|
EXPECT_TRUE(isEqual(estimated_position, simulated_position, 1e-5f)); |
|
} |
|
|
|
TEST_F(EkfExternalVisionTest, visionHorizontalPositionResetWithAlignment) |
|
{ |
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV) |
|
// Heading of drone in EKF frame is 0° |
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90° |
|
Quatf vision_to_ekf(Eulerf(0.0f,0.0f,math::radians(-90.0f))); |
|
_sensor_simulator._vio.setOrientation(vision_to_ekf.inversed()); |
|
_ekf_wrapper.enableExternalVisionAlignment(); |
|
|
|
const Vector3f simulated_position_in_vision_frame(8.3f, -1.0f, 0.0f); |
|
const Vector3f simulated_position_in_ekf_frame = |
|
Dcmf(vision_to_ekf) * simulated_position_in_vision_frame; |
|
_sensor_simulator._vio.setPosition(simulated_position_in_vision_frame); |
|
_ekf_wrapper.enableExternalVisionPositionFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
_sensor_simulator.runMicroseconds(2e5); |
|
|
|
// THEN: a reset to Vision velocity should be done |
|
const Vector3f estimated_position_in_ekf_frame = _ekf->getPosition(); |
|
EXPECT_TRUE(isEqual(estimated_position_in_ekf_frame, simulated_position_in_ekf_frame, 1e-2f)); |
|
} |
|
|
|
|
|
TEST_F(EkfExternalVisionTest, visionVarianceCheck) |
|
{ |
|
const Vector3f velVar_init = _ekf->getVelocityVariance(); |
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001); |
|
|
|
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f}); |
|
_ekf_wrapper.enableExternalVisionVelocityFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
_sensor_simulator.runSeconds(4); |
|
|
|
const Vector3f velVar_new = _ekf->getVelocityVariance(); |
|
EXPECT_TRUE(velVar_new(0) > velVar_new(1)); |
|
} |
|
|
|
TEST_F(EkfExternalVisionTest, visionAlignment) |
|
{ |
|
// GIVEN: Drone is pointing north, and we use mag (ROTATE_EV) |
|
// Heading of drone in EKF frame is 0° |
|
|
|
// WHEN: Vision frame is rotate +90°. The reported heading is -90° |
|
Quatf externalVisionFrameOffset(Eulerf(0.0f,0.0f,math::radians(90.0f))); |
|
_sensor_simulator._vio.setOrientation(externalVisionFrameOffset.inversed()); |
|
_ekf_wrapper.enableExternalVisionAlignment(); |
|
|
|
// Simulate high uncertainty on vision x axis which is in this case |
|
// the y EKF frame axis |
|
_sensor_simulator._vio.setVelocityVariance(Vector3f{2.0f,0.01f,0.01f}); |
|
_ekf_wrapper.enableExternalVisionVelocityFusion(); |
|
_sensor_simulator.startExternalVision(); |
|
|
|
const Vector3f velVar_init = _ekf->getVelocityVariance(); |
|
EXPECT_NEAR(velVar_init(0), velVar_init(1), 0.0001); |
|
|
|
_sensor_simulator.runSeconds(4); |
|
|
|
// THEN: velocity uncertainty in y should be bigger |
|
const Vector3f velVar_new = _ekf->getVelocityVariance(); |
|
EXPECT_TRUE(velVar_new(1) > velVar_new(0)); |
|
|
|
// THEN: the frame offset should be estimated correctly |
|
Quatf estimatedExternalVisionFrameOffset = _ekf->getVisionAlignmentQuaternion(); |
|
EXPECT_TRUE(matrix::isEqual(externalVisionFrameOffset.canonical(), |
|
estimatedExternalVisionFrameOffset.canonical())); |
|
}
|
|
|