You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1491 lines
46 KiB
1491 lines
46 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Petri Tanskanen <petri.tanskanen@inf.ethz.ch> |
|
* @author Lorenz Meier <lm@inf.ethz.ch> |
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch> |
|
* @author Julian Oes <joes@student.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file commander.c |
|
* Main system state machine implementation. |
|
*/ |
|
|
|
#include "commander.h" |
|
|
|
#include <nuttx/config.h> |
|
#include <pthread.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <stdbool.h> |
|
#include <string.h> |
|
#include <unistd.h> |
|
#include <fcntl.h> |
|
#include <errno.h> |
|
#include <debug.h> |
|
#include <sys/prctl.h> |
|
#include <v1.0/common/mavlink.h> |
|
#include <string.h> |
|
#include <arch/board/drv_led.h> |
|
#include <arch/board/up_hrt.h> |
|
#include <arch/board/drv_tone_alarm.h> |
|
#include <arch/board/up_hrt.h> |
|
#include "state_machine_helper.h" |
|
#include "systemlib/systemlib.h" |
|
#include <math.h> |
|
#include <poll.h> |
|
#include <uORB/uORB.h> |
|
#include <uORB/topics/sensor_combined.h> |
|
#include <uORB/topics/manual_control_setpoint.h> |
|
#include <uORB/topics/offboard_control_setpoint.h> |
|
#include <uORB/topics/vehicle_gps_position.h> |
|
#include <uORB/topics/vehicle_command.h> |
|
#include <uORB/topics/subsystem_info.h> |
|
#include <uORB/topics/actuator_controls.h> |
|
#include <mavlink/mavlink_log.h> |
|
|
|
#include <systemlib/param/param.h> |
|
#include <systemlib/systemlib.h> |
|
#include <systemlib/err.h> |
|
|
|
/* XXX MOVE CALIBRATION TO SENSORS APP THREAD */ |
|
#include <drivers/drv_accel.h> |
|
#include <drivers/drv_gyro.h> |
|
#include <drivers/drv_mag.h> |
|
#include <drivers/drv_baro.h> |
|
|
|
|
|
PARAM_DEFINE_INT32(SYS_FAILSAVE_LL, 0); /**< Go into low-level failsafe after 0 ms */ |
|
//PARAM_DEFINE_INT32(SYS_FAILSAVE_HL, 0); /**< Go into high-level failsafe after 0 ms */ |
|
|
|
#include <arch/board/up_cpuload.h> |
|
extern struct system_load_s system_load; |
|
|
|
/* Decouple update interval and hysteris counters, all depends on intervals */ |
|
#define COMMANDER_MONITORING_INTERVAL 50000 |
|
#define COMMANDER_MONITORING_LOOPSPERMSEC (1/(COMMANDER_MONITORING_INTERVAL/1000.0f)) |
|
#define LOW_VOLTAGE_BATTERY_COUNTER_LIMIT (LOW_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
#define CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT (CRITICAL_VOLTAGE_BATTERY_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
|
|
#define STICK_ON_OFF_LIMIT 0.75f |
|
#define STICK_THRUST_RANGE 1.0f |
|
#define STICK_ON_OFF_HYSTERESIS_TIME_MS 1000 |
|
#define STICK_ON_OFF_COUNTER_LIMIT (STICK_ON_OFF_HYSTERESIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
|
|
#define GPS_FIX_TYPE_2D 2 |
|
#define GPS_FIX_TYPE_3D 3 |
|
#define GPS_QUALITY_GOOD_HYSTERIS_TIME_MS 5000 |
|
#define GPS_QUALITY_GOOD_COUNTER_LIMIT (GPS_QUALITY_GOOD_HYSTERIS_TIME_MS*COMMANDER_MONITORING_LOOPSPERMSEC) |
|
|
|
/* File descriptors */ |
|
static int leds; |
|
static int buzzer; |
|
static int mavlink_fd; |
|
static bool commander_initialized = false; |
|
static struct vehicle_status_s current_status; /**< Main state machine */ |
|
static orb_advert_t stat_pub; |
|
|
|
static uint16_t nofix_counter = 0; |
|
static uint16_t gotfix_counter = 0; |
|
|
|
static unsigned int failsafe_lowlevel_timeout_ms; |
|
|
|
static bool thread_should_exit = false; /**< Deamon exit flag */ |
|
static bool thread_running = false; /**< Deamon status flag */ |
|
static int deamon_task; /**< Handle of deamon task / thread */ |
|
|
|
/* pthread loops */ |
|
static void *command_handling_loop(void *arg); |
|
static void *orb_receive_loop(void *arg); |
|
|
|
__EXPORT int commander_main(int argc, char *argv[]); |
|
|
|
/** |
|
* Mainloop of commander. |
|
*/ |
|
int commander_thread_main(int argc, char *argv[]); |
|
|
|
static int buzzer_init(void); |
|
static void buzzer_deinit(void); |
|
static int led_init(void); |
|
static void led_deinit(void); |
|
static int led_toggle(int led); |
|
static int led_on(int led); |
|
static int led_off(int led); |
|
static int pm_save_eeprom(bool only_unsaved); |
|
static void do_gyro_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void do_mag_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void do_accel_calibration(int status_pub, struct vehicle_status_s *status); |
|
static void handle_command(int status_pub, struct vehicle_status_s *current_status, struct vehicle_command_s *cmd); |
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state); |
|
|
|
|
|
|
|
/** |
|
* Print the correct usage. |
|
*/ |
|
static void usage(const char *reason); |
|
|
|
/** |
|
* Sort calibration values. |
|
* |
|
* Sorts the calibration values with bubble sort. |
|
* |
|
* @param a The array to sort |
|
* @param n The number of entries in the array |
|
*/ |
|
static void cal_bsort(float a[], int n); |
|
|
|
static int buzzer_init() |
|
{ |
|
buzzer = open("/dev/tone_alarm", O_WRONLY); |
|
|
|
if (buzzer < 0) { |
|
fprintf(stderr, "[commander] Buzzer: open fail\n"); |
|
return ERROR; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void buzzer_deinit() |
|
{ |
|
close(buzzer); |
|
} |
|
|
|
|
|
static int led_init() |
|
{ |
|
leds = open("/dev/led", O_RDONLY | O_NONBLOCK); |
|
|
|
if (leds < 0) { |
|
fprintf(stderr, "[commander] LED: open fail\n"); |
|
return ERROR; |
|
} |
|
|
|
if (ioctl(leds, LED_ON, LED_BLUE) || ioctl(leds, LED_ON, LED_AMBER)) { |
|
fprintf(stderr, "[commander] LED: ioctl fail\n"); |
|
return ERROR; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
static void led_deinit() |
|
{ |
|
close(leds); |
|
} |
|
|
|
static int led_toggle(int led) |
|
{ |
|
static int last_blue = LED_ON; |
|
static int last_amber = LED_ON; |
|
|
|
if (led == LED_BLUE) last_blue = (last_blue == LED_ON) ? LED_OFF : LED_ON; |
|
|
|
if (led == LED_AMBER) last_amber = (last_amber == LED_ON) ? LED_OFF : LED_ON; |
|
|
|
return ioctl(leds, ((led == LED_BLUE) ? last_blue : last_amber), led); |
|
} |
|
|
|
static int led_on(int led) |
|
{ |
|
return ioctl(leds, LED_ON, led); |
|
} |
|
|
|
static int led_off(int led) |
|
{ |
|
return ioctl(leds, LED_OFF, led); |
|
} |
|
|
|
enum AUDIO_PATTERN { |
|
AUDIO_PATTERN_ERROR = 1, |
|
AUDIO_PATTERN_NOTIFY_POSITIVE = 2, |
|
AUDIO_PATTERN_NOTIFY_NEUTRAL = 3, |
|
AUDIO_PATTERN_NOTIFY_NEGATIVE = 4, |
|
AUDIO_PATTERN_TETRIS = 5 |
|
}; |
|
|
|
int trigger_audio_alarm(uint8_t old_mode, uint8_t old_state, uint8_t new_mode, uint8_t new_state) { |
|
|
|
/* Trigger alarm if going into any error state */ |
|
if (((new_state == SYSTEM_STATE_GROUND_ERROR) && (old_state != SYSTEM_STATE_GROUND_ERROR)) || |
|
((new_state == SYSTEM_STATE_MISSION_ABORT) && (old_state != SYSTEM_STATE_MISSION_ABORT))) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_ERROR); |
|
} |
|
|
|
/* Trigger neutral on arming / disarming */ |
|
if (((new_state == SYSTEM_STATE_GROUND_READY) && (old_state != SYSTEM_STATE_GROUND_READY))) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, AUDIO_PATTERN_NOTIFY_NEUTRAL); |
|
} |
|
|
|
/* Trigger Tetris on being bored */ |
|
|
|
return 0; |
|
} |
|
|
|
static const char *parameter_file = "/eeprom/parameters"; |
|
|
|
static int pm_save_eeprom(bool only_unsaved) |
|
{ |
|
/* delete the file in case it exists */ |
|
unlink(parameter_file); |
|
|
|
/* create the file */ |
|
int fd = open(parameter_file, O_WRONLY | O_CREAT | O_EXCL); |
|
|
|
if (fd < 0) { |
|
warn("opening '%s' for writing failed", parameter_file); |
|
return -1; |
|
} |
|
|
|
int result = param_export(fd, only_unsaved); |
|
close(fd); |
|
|
|
if (result != 0) { |
|
unlink(parameter_file); |
|
warn("error exporting parameters to '%s'", parameter_file); |
|
return -2; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void do_mag_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* set to mag calibration mode */ |
|
status->flag_preflight_mag_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
/* 30 seconds */ |
|
int calibration_interval_ms = 30 * 1000; |
|
unsigned int calibration_counter = 0; |
|
|
|
float mag_max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; |
|
float mag_min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; |
|
|
|
int fd = open(MAG_DEVICE_PATH, 0); |
|
struct mag_scale mscale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale_null)) |
|
warn("WARNING: failed to set scale / offsets for mag"); |
|
close(fd); |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] Please rotate around X"); |
|
|
|
uint64_t calibration_start = hrt_absolute_time(); |
|
while ((hrt_absolute_time() - calibration_start)/1000 < calibration_interval_ms) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
/* get min/max values */ |
|
|
|
if (raw.magnetometer_ga[0] < mag_min[0]) { |
|
mag_min[0] = raw.magnetometer_ga[0]; |
|
} |
|
else if (raw.magnetometer_ga[0] > mag_max[0]) { |
|
mag_max[0] = raw.magnetometer_ga[0]; |
|
} |
|
|
|
if (raw.magnetometer_ga[1] < mag_min[1]) { |
|
mag_min[1] = raw.magnetometer_ga[1]; |
|
} |
|
else if (raw.magnetometer_ga[1] > mag_max[1]) { |
|
mag_max[1] = raw.magnetometer_ga[1]; |
|
} |
|
|
|
if (raw.magnetometer_ga[2] < mag_min[2]) { |
|
mag_min[2] = raw.magnetometer_ga[2]; |
|
} |
|
else if (raw.magnetometer_ga[2] > mag_max[2]) { |
|
mag_max[2] = raw.magnetometer_ga[2]; |
|
} |
|
|
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
mavlink_log_info(mavlink_fd, "[commander] mag cal canceled"); |
|
break; |
|
} |
|
} |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] mag calibration done"); |
|
|
|
/* disable calibration mode */ |
|
status->flag_preflight_mag_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
float mag_offset[3]; |
|
|
|
/** |
|
* The offset is subtracted from the sensor values, so the result is the |
|
* POSITIVE number that has to be subtracted from the sensor data |
|
* to shift the center to zero |
|
* |
|
* offset = max - ((max - min) / 2.0f) |
|
* |
|
* which reduces to |
|
* |
|
* offset = (max + min) / 2.0f |
|
*/ |
|
|
|
mag_offset[0] = (mag_max[0] + mag_min[0]) / 2.0f; |
|
mag_offset[1] = (mag_max[1] + mag_min[1]) / 2.0f; |
|
mag_offset[2] = (mag_max[2] + mag_min[2]) / 2.0f; |
|
|
|
printf("mag off x: %4.4f, y: %4.4f, z: %4.4f\n",(double)mag_offset[0],(double)mag_offset[0],(double)mag_offset[2]); |
|
|
|
/* announce and set new offset */ |
|
|
|
if (param_set(param_find("SENS_MAG_XOFF"), &(mag_offset[0]))) { |
|
fprintf(stderr, "[commander] Setting X mag offset failed!\n"); |
|
} |
|
|
|
if (param_set(param_find("SENS_MAG_YOFF"), &(mag_offset[1]))) { |
|
fprintf(stderr, "[commander] Setting Y mag offset failed!\n"); |
|
} |
|
|
|
if (param_set(param_find("SENS_MAG_ZOFF"), &(mag_offset[2]))) { |
|
fprintf(stderr, "[commander] Setting Z mag offset failed!\n"); |
|
} |
|
|
|
fd = open(MAG_DEVICE_PATH, 0); |
|
struct mag_scale mscale = { |
|
mag_offset[0], |
|
1.0f, |
|
mag_offset[1], |
|
1.0f, |
|
mag_offset[2], |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, MAGIOCSSCALE, (long unsigned int)&mscale)) |
|
warn("WARNING: failed to set scale / offsets for mag"); |
|
close(fd); |
|
|
|
/* auto-save to EEPROM */ |
|
int save_ret = pm_save_eeprom(false); |
|
if(save_ret != 0) { |
|
warn("WARNING: auto-save of params to EEPROM failed"); |
|
} |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] magnetometer calibration finished"); |
|
|
|
close(sub_sensor_combined); |
|
} |
|
|
|
void do_gyro_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* set to gyro calibration mode */ |
|
status->flag_preflight_gyro_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
const int calibration_count = 5000; |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
int calibration_counter = 0; |
|
float gyro_offset[3] = {0.0f, 0.0f, 0.0f}; |
|
|
|
/* set offsets to zero */ |
|
int fd = open(GYRO_DEVICE_PATH, 0); |
|
struct gyro_scale gscale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale_null)) |
|
warn("WARNING: failed to set scale / offsets for gyro"); |
|
close(fd); |
|
|
|
while (calibration_counter < calibration_count) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
gyro_offset[0] += raw.gyro_rad_s[0]; |
|
gyro_offset[1] += raw.gyro_rad_s[1]; |
|
gyro_offset[2] += raw.gyro_rad_s[2]; |
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration aborted, retry"); |
|
return; |
|
} |
|
} |
|
|
|
gyro_offset[0] = gyro_offset[0] / calibration_count; |
|
gyro_offset[1] = gyro_offset[1] / calibration_count; |
|
gyro_offset[2] = gyro_offset[2] / calibration_count; |
|
|
|
if (param_set(param_find("SENS_GYRO_XOFF"), &(gyro_offset[0]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X gyro offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_GYRO_YOFF"), &(gyro_offset[1]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y gyro offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_GYRO_ZOFF"), &(gyro_offset[2]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z gyro offset failed!"); |
|
} |
|
|
|
/* set offsets to actual value */ |
|
fd = open(GYRO_DEVICE_PATH, 0); |
|
struct gyro_scale gscale = { |
|
gyro_offset[0], |
|
1.0f, |
|
gyro_offset[1], |
|
1.0f, |
|
gyro_offset[2], |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, GYROIOCSSCALE, (long unsigned int)&gscale)) |
|
warn("WARNING: failed to set scale / offsets for gyro"); |
|
close(fd); |
|
|
|
/* auto-save to EEPROM */ |
|
int save_ret = pm_save_eeprom(false); |
|
if(save_ret != 0) { |
|
warn("WARNING: auto-save of params to EEPROM failed"); |
|
} |
|
|
|
/* exit to gyro calibration mode */ |
|
status->flag_preflight_gyro_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] gyro calibration finished"); |
|
|
|
printf("[commander] gyro cal: x:%8.4f y:%8.4f z:%8.4f\n", (double)gyro_offset[0], (double)gyro_offset[1], (double)gyro_offset[2]); |
|
|
|
close(sub_sensor_combined); |
|
} |
|
|
|
void do_accel_calibration(int status_pub, struct vehicle_status_s *status) |
|
{ |
|
/* announce change */ |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] keep it level and still"); |
|
/* set to accel calibration mode */ |
|
status->flag_preflight_accel_calibration = true; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
|
|
const int calibration_count = 5000; |
|
|
|
int sub_sensor_combined = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s raw; |
|
|
|
int calibration_counter = 0; |
|
float accel_offset[3] = {0.0f, 0.0f, 0.0f}; |
|
|
|
int fd = open(ACCEL_DEVICE_PATH, 0); |
|
struct accel_scale ascale_null = { |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
0.0f, |
|
1.0f, |
|
}; |
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale_null)) |
|
warn("WARNING: failed to set scale / offsets for accel"); |
|
close(fd); |
|
while (calibration_counter < calibration_count) { |
|
|
|
/* wait blocking for new data */ |
|
struct pollfd fds[1] = { { .fd = sub_sensor_combined, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 1000)) { |
|
orb_copy(ORB_ID(sensor_combined), sub_sensor_combined, &raw); |
|
accel_offset[0] += raw.accelerometer_m_s2[0]; |
|
accel_offset[1] += raw.accelerometer_m_s2[1]; |
|
accel_offset[2] += raw.accelerometer_m_s2[2]; |
|
calibration_counter++; |
|
} else { |
|
/* any poll failure for 1s is a reason to abort */ |
|
mavlink_log_info(mavlink_fd, "[commander] acceleration calibration aborted"); |
|
return; |
|
} |
|
} |
|
accel_offset[0] = accel_offset[0] / calibration_count; |
|
accel_offset[1] = accel_offset[1] / calibration_count; |
|
accel_offset[2] = accel_offset[2] / calibration_count; |
|
|
|
/* add the removed length from x / y to z, since we induce a scaling issue else */ |
|
float total_len = sqrtf(accel_offset[0]*accel_offset[0] + accel_offset[1]*accel_offset[1] + accel_offset[2]*accel_offset[2]); |
|
|
|
/* if length is correct, zero results here */ |
|
accel_offset[2] = accel_offset[2] + total_len; |
|
|
|
float scale = 9.80665f / total_len; |
|
|
|
if (param_set(param_find("SENS_ACC_XOFF"), &(accel_offset[0]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_YOFF"), &(accel_offset[1]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_ZOFF"), &(accel_offset[2]))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_XSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting X accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_YSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Y accel offset failed!"); |
|
} |
|
|
|
if (param_set(param_find("SENS_ACC_ZSCALE"), &(scale))) { |
|
mavlink_log_critical(mavlink_fd, "[commander] Setting Z accel offset failed!"); |
|
} |
|
|
|
fd = open(ACCEL_DEVICE_PATH, 0); |
|
struct accel_scale ascale = { |
|
accel_offset[0], |
|
scale, |
|
accel_offset[1], |
|
scale, |
|
accel_offset[2], |
|
scale, |
|
}; |
|
if (OK != ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&ascale)) |
|
warn("WARNING: failed to set scale / offsets for accel"); |
|
close(fd); |
|
|
|
/* auto-save to EEPROM */ |
|
int save_ret = pm_save_eeprom(false); |
|
if(save_ret != 0) { |
|
warn("WARNING: auto-save of params to EEPROM failed"); |
|
} |
|
/* exit to gyro calibration mode */ |
|
status->flag_preflight_accel_calibration = false; |
|
state_machine_publish(status_pub, status, mavlink_fd); |
|
mavlink_log_info(mavlink_fd, "[commander] acceleration calibration finished"); |
|
printf("[commander] accel calibration: x:%8.4f y:%8.4f z:%8.4f\n", (double)accel_offset[0],(double)accel_offset[1], (double)accel_offset[2]); |
|
close(sub_sensor_combined); |
|
} |
|
|
|
|
|
|
|
void handle_command(int status_pub, struct vehicle_status_s *current_vehicle_status, struct vehicle_command_s *cmd) |
|
{ |
|
/* result of the command */ |
|
uint8_t result = MAV_RESULT_UNSUPPORTED; |
|
|
|
|
|
/* supported command handling start */ |
|
|
|
/* request to set different system mode */ |
|
switch (cmd->command) { |
|
case MAV_CMD_DO_SET_MODE: |
|
{ |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, (uint8_t)cmd->param1)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
break; |
|
|
|
case MAV_CMD_COMPONENT_ARM_DISARM: { |
|
/* request to arm */ |
|
if ((int)cmd->param1 == 1) { |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
/* request to disarm */ |
|
} else if ((int)cmd->param1 == 0) { |
|
if (OK == update_state_machine_mode_request(status_pub, current_vehicle_status, mavlink_fd, VEHICLE_MODE_FLAG_SAFETY_ARMED)) { |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
/* request for an autopilot reboot */ |
|
case MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN: { |
|
if ((int)cmd->param1 == 1) { |
|
if (OK == do_state_update(status_pub, current_vehicle_status, mavlink_fd, SYSTEM_STATE_REBOOT)) { |
|
/* SPECIAL CASE: SYSTEM WILL NEVER RETURN HERE */ |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
/* system may return here */ |
|
result = MAV_RESULT_DENIED; |
|
} |
|
} |
|
} |
|
break; |
|
|
|
case PX4_CMD_CONTROLLER_SELECTION: { |
|
bool changed = false; |
|
if ((int)cmd->param1 != (int)current_vehicle_status->flag_control_rates_enabled) { |
|
current_vehicle_status->flag_control_rates_enabled = cmd->param1; |
|
changed = true; |
|
} |
|
if ((int)cmd->param2 != (int)current_vehicle_status->flag_control_attitude_enabled) { |
|
current_vehicle_status->flag_control_attitude_enabled = cmd->param2; |
|
changed = true; |
|
} |
|
if ((int)cmd->param3 != (int)current_vehicle_status->flag_control_velocity_enabled) { |
|
current_vehicle_status->flag_control_velocity_enabled = cmd->param3; |
|
changed = true; |
|
} |
|
if ((int)cmd->param4 != (int)current_vehicle_status->flag_control_position_enabled) { |
|
current_vehicle_status->flag_control_position_enabled = cmd->param4; |
|
changed = true; |
|
} |
|
|
|
if (changed) { |
|
/* publish current state machine */ |
|
state_machine_publish(status_pub, current_vehicle_status, mavlink_fd); |
|
} |
|
} |
|
|
|
// /* request to land */ |
|
// case MAV_CMD_NAV_LAND: |
|
// { |
|
// //TODO: add check if landing possible |
|
// //TODO: add landing maneuver |
|
// |
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_ARMED)) { |
|
// result = MAV_RESULT_ACCEPTED; |
|
// } } |
|
// break; |
|
// |
|
// /* request to takeoff */ |
|
// case MAV_CMD_NAV_TAKEOFF: |
|
// { |
|
// //TODO: add check if takeoff possible |
|
// //TODO: add takeoff maneuver |
|
// |
|
// if (0 == update_state_machine_custom_mode_request(status_pub, current_vehicle_status, SYSTEM_STATE_AUTO)) { |
|
// result = MAV_RESULT_ACCEPTED; |
|
// } |
|
// } |
|
// break; |
|
// |
|
/* preflight calibration */ |
|
case MAV_CMD_PREFLIGHT_CALIBRATION: { |
|
bool handled = false; |
|
|
|
/* gyro calibration */ |
|
if ((int)(cmd->param1) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting gyro calibration"); |
|
do_gyro_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished gyro calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING gyro calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* magnetometer calibration */ |
|
if ((int)(cmd->param2) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting mag calibration"); |
|
do_mag_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished mag calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] CMD REJECTING mag calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* accel calibration */ |
|
if ((int)(cmd->param5) == 1) { |
|
/* transition to calibration state */ |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_PREFLIGHT); |
|
|
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT) { |
|
mavlink_log_info(mavlink_fd, "[commander] CMD starting accel calibration"); |
|
do_accel_calibration(status_pub, ¤t_status); |
|
mavlink_log_info(mavlink_fd, "[commander] CMD finished accel calibration"); |
|
do_state_update(status_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
result = MAV_RESULT_ACCEPTED; |
|
} else { |
|
mavlink_log_critical(mavlink_fd, "[commander] REJECTING accel calibration"); |
|
result = MAV_RESULT_DENIED; |
|
} |
|
handled = true; |
|
} |
|
|
|
/* none found */ |
|
if (!handled) { |
|
//fprintf(stderr, "[commander] refusing unsupported calibration request\n"); |
|
mavlink_log_critical(mavlink_fd, "[commander] CMD refusing unsup. calib. request"); |
|
result = MAV_RESULT_UNSUPPORTED; |
|
} |
|
} |
|
break; |
|
|
|
/* |
|
* do not report an error for commands that are |
|
* handled directly by MAVLink. |
|
*/ |
|
case MAV_CMD_PREFLIGHT_STORAGE: |
|
break; |
|
|
|
default: { |
|
mavlink_log_critical(mavlink_fd, "[commander] refusing unsupported command"); |
|
result = MAV_RESULT_UNSUPPORTED; |
|
} |
|
break; |
|
} |
|
|
|
/* supported command handling stop */ |
|
|
|
|
|
/* send any requested ACKs */ |
|
if (cmd->confirmation > 0) { |
|
/* send acknowledge command */ |
|
// XXX TODO |
|
} |
|
|
|
} |
|
|
|
/** |
|
* Handle commands sent by the ground control station via MAVLink. |
|
*/ |
|
static void *command_handling_loop(void *arg) |
|
{ |
|
/* Set thread name */ |
|
prctl(PR_SET_NAME, "commander cmd handler", getpid()); |
|
|
|
/* Subscribe to command topic */ |
|
int cmd_sub = orb_subscribe(ORB_ID(vehicle_command)); |
|
struct vehicle_command_s cmd; |
|
|
|
while (!thread_should_exit) { |
|
struct pollfd fds[1] = { { .fd = cmd_sub, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 5000) == 0) { |
|
/* timeout, but this is no problem, silently ignore */ |
|
} else { |
|
/* got command */ |
|
orb_copy(ORB_ID(vehicle_command), cmd_sub, &cmd); |
|
|
|
/* handle it */ |
|
handle_command(stat_pub, ¤t_status, &cmd); |
|
} |
|
} |
|
|
|
close(cmd_sub); |
|
|
|
return NULL; |
|
} |
|
|
|
static void *orb_receive_loop(void *arg) //handles status information coming from subsystems (present, enabled, health), these values do not indicate the quality (variance) of the signal |
|
{ |
|
/* Set thread name */ |
|
prctl(PR_SET_NAME, "commander orb rcv", getpid()); |
|
|
|
/* Subscribe to command topic */ |
|
int subsys_sub = orb_subscribe(ORB_ID(subsystem_info)); |
|
struct subsystem_info_s info; |
|
|
|
while (!thread_should_exit) { |
|
struct pollfd fds[1] = { { .fd = subsys_sub, .events = POLLIN } }; |
|
|
|
if (poll(fds, 1, 5000) == 0) { |
|
/* timeout, but this is no problem, silently ignore */ |
|
} else { |
|
/* got command */ |
|
orb_copy(ORB_ID(subsystem_info), subsys_sub, &info); |
|
|
|
printf("Subsys changed: %d\n", (int)info.subsystem_type); |
|
} |
|
} |
|
|
|
close(subsys_sub); |
|
|
|
return NULL; |
|
} |
|
|
|
|
|
|
|
enum BAT_CHEM { |
|
BAT_CHEM_LITHIUM_POLYMERE = 0, |
|
}; |
|
|
|
/* |
|
* Provides a coarse estimate of remaining battery power. |
|
* |
|
* The estimate is very basic and based on decharging voltage curves. |
|
* |
|
* @return the estimated remaining capacity in 0..1 |
|
*/ |
|
float battery_remaining_estimate_voltage(int cells, int chemistry, float voltage); |
|
|
|
PARAM_DEFINE_FLOAT(BAT_V_EMPTY, 3.2f); |
|
PARAM_DEFINE_FLOAT(BAT_V_FULL, 4.05f); |
|
|
|
float battery_remaining_estimate_voltage(int cells, int chemistry, float voltage) |
|
{ |
|
float ret = 0; |
|
static param_t bat_volt_empty; |
|
static param_t bat_volt_full; |
|
static bool initialized = false; |
|
static unsigned int counter = 0; |
|
|
|
if (!initialized) { |
|
bat_volt_empty = param_find("BAT_V_EMPTY"); |
|
bat_volt_full = param_find("BAT_V_FULL"); |
|
initialized = true; |
|
} |
|
|
|
float chemistry_voltage_empty[1] = { 3.2f }; |
|
float chemistry_voltage_full[1] = { 4.05f }; |
|
|
|
if (counter % 100 == 0) { |
|
param_get(bat_volt_empty, &(chemistry_voltage_empty[0])); |
|
param_get(bat_volt_full, &(chemistry_voltage_full[0])); |
|
} |
|
counter++; |
|
|
|
ret = (voltage - cells * chemistry_voltage_empty[chemistry]) / (cells * (chemistry_voltage_full[chemistry] - chemistry_voltage_empty[chemistry])); |
|
|
|
/* limit to sane values */ |
|
ret = (ret < 0) ? 0 : ret; |
|
ret = (ret > 1) ? 1 : ret; |
|
return ret; |
|
} |
|
|
|
static void |
|
usage(const char *reason) |
|
{ |
|
if (reason) |
|
fprintf(stderr, "%s\n", reason); |
|
fprintf(stderr, "usage: deamon {start|stop|status} [-p <additional params>]\n\n"); |
|
exit(1); |
|
} |
|
|
|
/** |
|
* The deamon app only briefly exists to start |
|
* the background job. The stack size assigned in the |
|
* Makefile does only apply to this management task. |
|
* |
|
* The actual stack size should be set in the call |
|
* to task_create(). |
|
*/ |
|
int commander_main(int argc, char *argv[]) |
|
{ |
|
if (argc < 1) |
|
usage("missing command"); |
|
|
|
if (!strcmp(argv[1], "start")) { |
|
|
|
if (thread_running) { |
|
printf("commander already running\n"); |
|
/* this is not an error */ |
|
exit(0); |
|
} |
|
|
|
thread_should_exit = false; |
|
deamon_task = task_spawn("commander", |
|
SCHED_DEFAULT, |
|
SCHED_PRIORITY_MAX - 50, |
|
4096, |
|
commander_thread_main, |
|
(argv) ? (const char **)&argv[2] : (const char **)NULL); |
|
thread_running = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "stop")) { |
|
thread_should_exit = true; |
|
exit(0); |
|
} |
|
|
|
if (!strcmp(argv[1], "status")) { |
|
if (thread_running) { |
|
printf("\tcommander is running\n"); |
|
} else { |
|
printf("\tcommander not started\n"); |
|
} |
|
exit(0); |
|
} |
|
|
|
usage("unrecognized command"); |
|
exit(1); |
|
} |
|
|
|
int commander_thread_main(int argc, char *argv[]) |
|
{ |
|
/* not yet initialized */ |
|
commander_initialized = false; |
|
|
|
/* set parameters */ |
|
failsafe_lowlevel_timeout_ms = 0; |
|
param_get(param_find("SYS_FAILSAVE_LL"), &failsafe_lowlevel_timeout_ms); |
|
|
|
/* welcome user */ |
|
printf("[commander] I am in command now!\n"); |
|
|
|
/* pthreads for command and subsystem info handling */ |
|
pthread_t command_handling_thread; |
|
pthread_t subsystem_info_thread; |
|
|
|
/* initialize */ |
|
if (led_init() != 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to initialize leds\n"); |
|
} |
|
|
|
if (buzzer_init() != 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to initialize buzzer\n"); |
|
} |
|
|
|
mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); |
|
|
|
if (mavlink_fd < 0) { |
|
fprintf(stderr, "[commander] ERROR: Failed to open MAVLink log stream, start mavlink app first.\n"); |
|
} |
|
|
|
/* make sure we are in preflight state */ |
|
memset(¤t_status, 0, sizeof(current_status)); |
|
current_status.state_machine = SYSTEM_STATE_PREFLIGHT; |
|
current_status.flag_system_armed = false; |
|
/* neither manual nor offboard control commands have been received */ |
|
current_status.offboard_control_signal_found_once = false; |
|
current_status.rc_signal_found_once = false; |
|
/* mark all signals lost as long as they haven't been found */ |
|
current_status.rc_signal_lost = true; |
|
current_status.offboard_control_signal_lost = true; |
|
|
|
/* advertise to ORB */ |
|
stat_pub = orb_advertise(ORB_ID(vehicle_status), ¤t_status); |
|
/* publish current state machine */ |
|
state_machine_publish(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
if (stat_pub < 0) { |
|
printf("[commander] ERROR: orb_advertise for topic vehicle_status failed.\n"); |
|
exit(ERROR); |
|
} |
|
|
|
mavlink_log_info(mavlink_fd, "[commander] system is running"); |
|
|
|
/* create pthreads */ |
|
pthread_attr_t command_handling_attr; |
|
pthread_attr_init(&command_handling_attr); |
|
pthread_attr_setstacksize(&command_handling_attr, 6000); |
|
pthread_create(&command_handling_thread, &command_handling_attr, command_handling_loop, NULL); |
|
|
|
pthread_attr_t subsystem_info_attr; |
|
pthread_attr_init(&subsystem_info_attr); |
|
pthread_attr_setstacksize(&subsystem_info_attr, 2048); |
|
pthread_create(&subsystem_info_thread, &subsystem_info_attr, orb_receive_loop, NULL); |
|
|
|
/* Start monitoring loop */ |
|
uint16_t counter = 0; |
|
uint8_t flight_env; |
|
|
|
/* Initialize to 3.0V to make sure the low-pass loads below valid threshold */ |
|
float battery_voltage = 12.0f; |
|
bool battery_voltage_valid = true; |
|
bool low_battery_voltage_actions_done = false; |
|
bool critical_battery_voltage_actions_done = false; |
|
uint8_t low_voltage_counter = 0; |
|
uint16_t critical_voltage_counter = 0; |
|
int16_t mode_switch_rc_value; |
|
float bat_remain = 1.0f; |
|
|
|
uint16_t stick_off_counter = 0; |
|
uint16_t stick_on_counter = 0; |
|
|
|
float hdop = 65535.0f; |
|
|
|
int gps_quality_good_counter = 0; |
|
|
|
/* Subscribe to manual control data */ |
|
int sp_man_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); |
|
struct manual_control_setpoint_s sp_man; |
|
memset(&sp_man, 0, sizeof(sp_man)); |
|
|
|
/* Subscribe to offboard control data */ |
|
int sp_offboard_sub = orb_subscribe(ORB_ID(offboard_control_setpoint)); |
|
struct offboard_control_setpoint_s sp_offboard; |
|
memset(&sp_offboard, 0, sizeof(sp_offboard)); |
|
|
|
int gps_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); |
|
struct vehicle_gps_position_s gps; |
|
memset(&gps, 0, sizeof(gps)); |
|
|
|
int sensor_sub = orb_subscribe(ORB_ID(sensor_combined)); |
|
struct sensor_combined_s sensors; |
|
memset(&sensors, 0, sizeof(sensors)); |
|
|
|
// uint8_t vehicle_state_previous = current_status.state_machine; |
|
float voltage_previous = 0.0f; |
|
|
|
uint64_t last_idle_time = 0; |
|
|
|
/* now initialized */ |
|
commander_initialized = true; |
|
|
|
uint64_t start_time = hrt_absolute_time(); |
|
uint64_t failsave_ll_start_time = 0; |
|
|
|
bool state_changed = true; |
|
|
|
while (!thread_should_exit) { |
|
|
|
/* Get current values */ |
|
bool new_data; |
|
orb_check(sp_man_sub, &new_data); |
|
if (new_data) { |
|
orb_copy(ORB_ID(manual_control_setpoint), sp_man_sub, &sp_man); |
|
} |
|
|
|
orb_check(sp_offboard_sub, &new_data); |
|
if (new_data) { |
|
orb_copy(ORB_ID(offboard_control_setpoint), sp_offboard_sub, &sp_offboard); |
|
} |
|
orb_copy(ORB_ID(vehicle_gps_position), gps_sub, &gps); |
|
orb_copy(ORB_ID(sensor_combined), sensor_sub, &sensors); |
|
|
|
battery_voltage = sensors.battery_voltage_v; |
|
battery_voltage_valid = sensors.battery_voltage_valid; |
|
|
|
/* |
|
* Only update battery voltage estimate if voltage is |
|
* valid and system has been running for two and a half seconds |
|
*/ |
|
if (battery_voltage_valid && (hrt_absolute_time() - start_time > 2500000)) { |
|
bat_remain = battery_remaining_estimate_voltage(3, BAT_CHEM_LITHIUM_POLYMERE, battery_voltage); |
|
} |
|
|
|
/* Slow but important 8 Hz checks */ |
|
if (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 8) == 0) { |
|
/* toggle activity (blue) led at 1 Hz in standby, 10 Hz in armed mode */ |
|
if ((current_status.state_machine == SYSTEM_STATE_GROUND_READY || |
|
current_status.state_machine == SYSTEM_STATE_AUTO || |
|
current_status.state_machine == SYSTEM_STATE_MANUAL)) { |
|
/* armed */ |
|
led_toggle(LED_BLUE); |
|
|
|
} else if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { |
|
/* not armed */ |
|
led_toggle(LED_BLUE); |
|
} |
|
|
|
/* toggle error led at 5 Hz in HIL mode */ |
|
if (current_status.flag_hil_enabled) { |
|
/* hil enabled */ |
|
led_toggle(LED_AMBER); |
|
|
|
} else if (bat_remain < 0.3f && (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT)) { |
|
/* toggle error (red) at 5 Hz on low battery or error */ |
|
led_toggle(LED_AMBER); |
|
|
|
} else { |
|
// /* Constant error indication in standby mode without GPS */ |
|
// if (!current_status.gps_valid) { |
|
// led_on(LED_AMBER); |
|
|
|
// } else { |
|
// led_off(LED_AMBER); |
|
// } |
|
} |
|
|
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0) { |
|
/* compute system load */ |
|
uint64_t interval_runtime = system_load.tasks[0].total_runtime - last_idle_time; |
|
|
|
if (last_idle_time > 0) |
|
current_status.load = 1000 - (interval_runtime / 1000); //system load is time spent in non-idle |
|
|
|
last_idle_time = system_load.tasks[0].total_runtime; |
|
} |
|
} |
|
|
|
// // XXX Export patterns and threshold to parameters |
|
/* Trigger audio event for low battery */ |
|
if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 0)) { |
|
/* For less than 10%, start be really annoying at 5 Hz */ |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, 3); |
|
|
|
} else if (bat_remain < 0.1f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 4) == 2)) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 0)) { |
|
/* For less than 20%, start be slightly annoying at 1 Hz */ |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
ioctl(buzzer, TONE_SET_ALARM, 2); |
|
|
|
} else if (bat_remain < 0.2f && battery_voltage_valid && (counter % ((1000000 / COMMANDER_MONITORING_INTERVAL) / 2) == 2)) { |
|
ioctl(buzzer, TONE_SET_ALARM, 0); |
|
} |
|
|
|
/* Check battery voltage */ |
|
/* write to sys_status */ |
|
current_status.voltage_battery = battery_voltage; |
|
|
|
/* if battery voltage is getting lower, warn using buzzer, etc. */ |
|
if (battery_voltage_valid && (bat_remain < 0.15f /* XXX MAGIC NUMBER */) && (false == low_battery_voltage_actions_done)) { //TODO: add filter, or call emergency after n measurements < VOLTAGE_BATTERY_MINIMAL_MILLIVOLTS |
|
|
|
if (low_voltage_counter > LOW_VOLTAGE_BATTERY_COUNTER_LIMIT) { |
|
low_battery_voltage_actions_done = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] WARNING! LOW BATTERY!"); |
|
} |
|
|
|
low_voltage_counter++; |
|
} |
|
|
|
/* Critical, this is rather an emergency, kill signal to sdlog and change state machine */ |
|
else if (battery_voltage_valid && (bat_remain < 0.1f /* XXX MAGIC NUMBER */) && (false == critical_battery_voltage_actions_done && true == low_battery_voltage_actions_done)) { |
|
if (critical_voltage_counter > CRITICAL_VOLTAGE_BATTERY_COUNTER_LIMIT) { |
|
critical_battery_voltage_actions_done = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] EMERGENCY! CIRITICAL BATTERY!"); |
|
state_machine_emergency(stat_pub, ¤t_status, mavlink_fd); |
|
} |
|
|
|
critical_voltage_counter++; |
|
|
|
} else { |
|
low_voltage_counter = 0; |
|
critical_voltage_counter = 0; |
|
} |
|
|
|
/* End battery voltage check */ |
|
|
|
/* Check if last transition deserved an audio event */ |
|
// #warning This code depends on state that is no longer? maintained |
|
// #if 0 |
|
// trigger_audio_alarm(vehicle_mode_previous, vehicle_state_previous, current_status.mode, current_status.state_machine); |
|
// #endif |
|
|
|
/* only check gps fix if we are outdoor */ |
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_OUTDOOR) { |
|
// |
|
// hdop = (float)(gps.eph) / 100.0f; |
|
// |
|
// /* check if gps fix is ok */ |
|
// if (gps.fix_type == GPS_FIX_TYPE_3D) { //TODO: is 2d-fix ok? //see http://en.wikipedia.org/wiki/Dilution_of_precision_%28GPS%29 |
|
// |
|
// if (gotfix_counter >= GPS_GOTFIX_COUNTER_REQUIRED) { //TODO: add also a required time? |
|
// update_state_machine_got_position_fix(stat_pub, ¤t_status); |
|
// gotfix_counter = 0; |
|
// } else { |
|
// gotfix_counter++; |
|
// } |
|
// nofix_counter = 0; |
|
// |
|
// if (hdop < 5.0f) { //TODO: this should be a parameter |
|
// if (gps_quality_good_counter > GPS_QUALITY_GOOD_COUNTER_LIMIT) { |
|
// current_status.gps_valid = true;//--> position estimator can use the gps measurements |
|
// } |
|
// |
|
// gps_quality_good_counter++; |
|
// |
|
// |
|
//// if(counter%10 == 0)//for testing only |
|
//// printf("gps_quality_good_counter = %u\n", gps_quality_good_counter);//for testing only |
|
// |
|
// } else { |
|
// gps_quality_good_counter = 0; |
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements |
|
// } |
|
// |
|
// } else { |
|
// gps_quality_good_counter = 0; |
|
// current_status.gps_valid = false;//--> position estimator can not use the gps measurements |
|
// |
|
// if (nofix_counter > GPS_NOFIX_COUNTER_LIMIT) { //TODO: add also a timer limit? |
|
// update_state_machine_no_position_fix(stat_pub, ¤t_status); |
|
// nofix_counter = 0; |
|
// } else { |
|
// nofix_counter++; |
|
// } |
|
// gotfix_counter = 0; |
|
// } |
|
// |
|
// } |
|
// |
|
// |
|
// if (flight_env == PX4_FLIGHT_ENVIRONMENT_TESTING) //simulate position fix for quick indoor tests |
|
//update_state_machine_got_position_fix(stat_pub, ¤t_status, mavlink_fd); |
|
/* end: check gps */ |
|
|
|
|
|
/* ignore RC signals if in offboard control mode */ |
|
if (!current_status.offboard_control_signal_found_once && sp_man.timestamp != 0) { |
|
/* Start RC state check */ |
|
|
|
if ((hrt_absolute_time() - sp_man.timestamp) < 100000) { |
|
|
|
/* check if left stick is in lower left position --> switch to standby state */ |
|
if ((sp_man.yaw < -STICK_ON_OFF_LIMIT) && sp_man.throttle < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values |
|
if (stick_off_counter > STICK_ON_OFF_COUNTER_LIMIT) { |
|
update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd); |
|
stick_on_counter = 0; |
|
|
|
} else { |
|
stick_off_counter++; |
|
stick_on_counter = 0; |
|
} |
|
} |
|
|
|
/* check if left stick is in lower right position --> arm */ |
|
if (sp_man.yaw > STICK_ON_OFF_LIMIT && sp_man.throttle < STICK_THRUST_RANGE*0.2f) { //TODO: remove hardcoded values |
|
if (stick_on_counter > STICK_ON_OFF_COUNTER_LIMIT) { |
|
update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd); |
|
stick_on_counter = 0; |
|
|
|
} else { |
|
stick_on_counter++; |
|
stick_off_counter = 0; |
|
} |
|
} |
|
//printf("RC: y:%i/t:%i s:%i chans: %i\n", rc_yaw_scale, rc_throttle_scale, mode_switch_rc_value, rc.chan_count); |
|
|
|
if (sp_man.override_mode_switch > STICK_ON_OFF_LIMIT) { |
|
update_state_machine_mode_manual(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
} else if (sp_man.override_mode_switch < -STICK_ON_OFF_LIMIT) { |
|
update_state_machine_mode_auto(stat_pub, ¤t_status, mavlink_fd); |
|
|
|
} else { |
|
update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd); |
|
} |
|
|
|
/* handle the case where RC signal was regained */ |
|
if (!current_status.rc_signal_found_once) { |
|
current_status.rc_signal_found_once = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] DETECTED RC SIGNAL FIRST TIME."); |
|
} else { |
|
if (current_status.rc_signal_lost) mavlink_log_critical(mavlink_fd, "[commander] RECOVERY - RC SIGNAL GAINED!"); |
|
} |
|
|
|
current_status.rc_signal_cutting_off = false; |
|
current_status.rc_signal_lost = false; |
|
current_status.rc_signal_lost_interval = 0; |
|
|
|
} else { |
|
static uint64_t last_print_time = 0; |
|
/* print error message for first RC glitch and then every 5 s / 5000 ms) */ |
|
if (!current_status.rc_signal_cutting_off || ((hrt_absolute_time() - last_print_time) > 5000000)) { |
|
/* only complain if the offboard control is NOT active */ |
|
current_status.rc_signal_cutting_off = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] CRITICAL - NO REMOTE SIGNAL!"); |
|
last_print_time = hrt_absolute_time(); |
|
} |
|
/* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */ |
|
current_status.rc_signal_lost_interval = hrt_absolute_time() - sp_man.timestamp; |
|
|
|
/* if the RC signal is gone for a full second, consider it lost */ |
|
if (current_status.rc_signal_lost_interval > 1000000) { |
|
current_status.rc_signal_lost = true; |
|
current_status.failsave_lowlevel = true; |
|
state_changed = true; |
|
} |
|
|
|
// if (hrt_absolute_time() - current_status.failsave_ll_start_time > failsafe_lowlevel_timeout_ms*1000) { |
|
// publish_armed_status(¤t_status); |
|
// } |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
/* End mode switch */ |
|
|
|
/* END RC state check */ |
|
|
|
|
|
/* State machine update for offboard control */ |
|
if (!current_status.rc_signal_found_once && sp_offboard.timestamp != 0) { |
|
if ((hrt_absolute_time() - sp_offboard.timestamp) < 5000000) { |
|
|
|
/* decide about attitude control flag, enable in att/pos/vel */ |
|
bool attitude_ctrl_enabled = (sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_ATTITUDE || |
|
sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_VELOCITY || |
|
sp_offboard.mode == OFFBOARD_CONTROL_MODE_DIRECT_POSITION); |
|
|
|
/* decide about rate control flag, enable it always XXX (for now) */ |
|
bool rates_ctrl_enabled = true; |
|
|
|
/* set up control mode */ |
|
if (current_status.flag_control_attitude_enabled != attitude_ctrl_enabled) { |
|
current_status.flag_control_attitude_enabled = attitude_ctrl_enabled; |
|
state_changed = true; |
|
} |
|
|
|
if (current_status.flag_control_rates_enabled != rates_ctrl_enabled) { |
|
current_status.flag_control_rates_enabled = rates_ctrl_enabled; |
|
state_changed = true; |
|
} |
|
|
|
/* handle the case where offboard control signal was regained */ |
|
if (!current_status.offboard_control_signal_found_once) { |
|
current_status.offboard_control_signal_found_once = true; |
|
/* enable offboard control, disable manual input */ |
|
current_status.flag_control_manual_enabled = false; |
|
current_status.flag_control_offboard_enabled = true; |
|
state_changed = true; |
|
|
|
mavlink_log_critical(mavlink_fd, "[commander] DETECTED OFFBOARD CONTROL SIGNAL FIRST TIME."); |
|
} else { |
|
if (current_status.offboard_control_signal_lost) { |
|
mavlink_log_critical(mavlink_fd, "[commander] RECOVERY - OFFBOARD CONTROL SIGNAL GAINED!"); |
|
state_changed = true; |
|
} |
|
} |
|
|
|
current_status.offboard_control_signal_weak = false; |
|
current_status.offboard_control_signal_lost = false; |
|
current_status.offboard_control_signal_lost_interval = 0; |
|
|
|
/* arm / disarm on request */ |
|
if (sp_offboard.armed && !current_status.flag_system_armed) { |
|
update_state_machine_arm(stat_pub, ¤t_status, mavlink_fd); |
|
/* switch to stabilized mode = takeoff */ |
|
update_state_machine_mode_stabilized(stat_pub, ¤t_status, mavlink_fd); |
|
} else if (!sp_offboard.armed && current_status.flag_system_armed) { |
|
update_state_machine_disarm(stat_pub, ¤t_status, mavlink_fd); |
|
} |
|
|
|
} else { |
|
static uint64_t last_print_time = 0; |
|
/* print error message for first RC glitch and then every 5 s / 5000 ms) */ |
|
if (!current_status.offboard_control_signal_weak || ((hrt_absolute_time() - last_print_time) > 5000000)) { |
|
current_status.offboard_control_signal_weak = true; |
|
mavlink_log_critical(mavlink_fd, "[commander] CRITICAL - NO OFFBOARD CONTROL SIGNAL!"); |
|
last_print_time = hrt_absolute_time(); |
|
} |
|
/* flag as lost and update interval since when the signal was lost (to initiate RTL after some time) */ |
|
current_status.offboard_control_signal_lost_interval = hrt_absolute_time() - sp_offboard.timestamp; |
|
|
|
/* if the signal is gone for 0.1 seconds, consider it lost */ |
|
if (current_status.offboard_control_signal_lost_interval > 100000) { |
|
current_status.offboard_control_signal_lost = true; |
|
current_status.failsave_lowlevel_start_time = hrt_absolute_time(); |
|
current_status.failsave_lowlevel = true; |
|
|
|
/* kill motors after timeout */ |
|
if (hrt_absolute_time() - current_status.failsave_lowlevel_start_time > failsafe_lowlevel_timeout_ms*1000) { |
|
state_changed = true; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
current_status.counter++; |
|
current_status.timestamp = hrt_absolute_time(); |
|
|
|
|
|
/* If full run came back clean, transition to standby */ |
|
if (current_status.state_machine == SYSTEM_STATE_PREFLIGHT && |
|
current_status.flag_preflight_gyro_calibration == false && |
|
current_status.flag_preflight_mag_calibration == false && |
|
current_status.flag_preflight_accel_calibration == false) { |
|
/* All ok, no calibration going on, go to standby */ |
|
do_state_update(stat_pub, ¤t_status, mavlink_fd, SYSTEM_STATE_STANDBY); |
|
} |
|
|
|
/* publish at least with 1 Hz */ |
|
if (counter % (1000000 / COMMANDER_MONITORING_INTERVAL) == 0 || state_changed) { |
|
publish_armed_status(¤t_status); |
|
orb_publish(ORB_ID(vehicle_status), stat_pub, ¤t_status); |
|
state_changed = false; |
|
} |
|
|
|
/* Store old modes to detect and act on state transitions */ |
|
voltage_previous = current_status.voltage_battery; |
|
|
|
fflush(stdout); |
|
counter++; |
|
usleep(COMMANDER_MONITORING_INTERVAL); |
|
} |
|
|
|
/* wait for threads to complete */ |
|
pthread_join(command_handling_thread, NULL); |
|
pthread_join(subsystem_info_thread, NULL); |
|
|
|
/* close fds */ |
|
led_deinit(); |
|
buzzer_deinit(); |
|
close(sp_man_sub); |
|
close(sp_offboard_sub); |
|
close(gps_sub); |
|
close(sensor_sub); |
|
|
|
printf("[commander] exiting..\n"); |
|
fflush(stdout); |
|
|
|
thread_running = false; |
|
|
|
return 0; |
|
} |
|
|
|
|