You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
9.7 KiB
275 lines
9.7 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2008-2012 PX4 Development Team. All rights reserved. |
|
* Author: @author Lorenz Meier <lm@inf.ethz.ch> |
|
* @author Laurens Mackay <mackayl@student.ethz.ch> |
|
* @author Tobias Naegeli <naegelit@student.ethz.ch> |
|
* @author Martin Rutschmann <rutmarti@student.ethz.ch> |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file multirotor_position_control.c |
|
* Implementation of the position control for a multirotor VTOL |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <math.h> |
|
#include <stdbool.h> |
|
#include <float.h> |
|
#include <systemlib/pid/pid.h> |
|
|
|
#include "multirotor_position_control.h" |
|
|
|
float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
|
{ |
|
double lat_now_rad = lat_now / 180.0 * M_PI; |
|
double lon_now_rad = lon_now / 180.0 * M_PI; |
|
double lat_next_rad = lat_next / 180.0 * M_PI; |
|
double lon_next_rad = lon_next / 180.0 * M_PI; |
|
|
|
|
|
double d_lat = lat_next_rad - lat_now_rad; |
|
double d_lon = lon_next_rad - lon_now_rad; |
|
|
|
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad); |
|
double c = 2 * atan2(sqrt(a), sqrt(1 - a)); |
|
|
|
const double radius_earth = 6371000.0; |
|
|
|
return radius_earth * c; |
|
} |
|
|
|
float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next) |
|
{ |
|
double lat_now_rad = lat_now / 180.0 * M_PI; |
|
double lon_now_rad = lon_now / 180.0 * M_PI; |
|
double lat_next_rad = lat_next / 180.0 * M_PI; |
|
double lon_next_rad = lon_next / 180.0 * M_PI; |
|
|
|
double d_lat = lat_next_rad - lat_now_rad; |
|
double d_lon = lon_next_rad - lon_now_rad; |
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */ |
|
float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon)); |
|
|
|
// XXX wrapping check is incomplete |
|
if (theta < 0.0f) { |
|
theta = theta + 2.0f * M_PI_F; |
|
} |
|
|
|
return theta; |
|
} |
|
|
|
void control_multirotor_position(const struct vehicle_state_s *vstatus, const struct vehicle_manual_control_s *manual, |
|
const struct vehicle_attitude_s *att, const struct vehicle_local_position_s *local_pos, |
|
const struct vehicle_local_position_setpoint_s *local_pos_sp, struct vehicle_attitude_setpoint_s *att_sp) |
|
{ |
|
static PID_t distance_controller; |
|
|
|
static int read_ret; |
|
static global_data_position_t position_estimated; |
|
|
|
static uint16_t counter; |
|
|
|
static bool initialized; |
|
static uint16_t pm_counter; |
|
|
|
static float lat_next; |
|
static float lon_next; |
|
|
|
static float pitch_current; |
|
|
|
static float thrust_total; |
|
|
|
|
|
if (initialized == false) { |
|
|
|
pid_init(&distance_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_AWU], |
|
PID_MODE_DERIVATIV_CALC, 150);//150 |
|
|
|
// pid_pos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_LIM]; |
|
// pid_pos_z_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_Z_LIM]; |
|
|
|
thrust_total = 0.0f; |
|
|
|
/* Position initialization */ |
|
/* Wait for new position estimate */ |
|
do { |
|
read_ret = read_lock_position(&position_estimated); |
|
} while (read_ret != 0); |
|
|
|
lat_next = position_estimated.lat; |
|
lon_next = position_estimated.lon; |
|
|
|
/* attitude initialization */ |
|
global_data_lock(&global_data_attitude->access_conf); |
|
pitch_current = global_data_attitude->pitch; |
|
global_data_unlock(&global_data_attitude->access_conf); |
|
|
|
initialized = true; |
|
} |
|
|
|
/* load new parameters with 10Hz */ |
|
if (counter % 50 == 0) { |
|
if (global_data_trylock(&global_data_parameter_storage->access_conf) == 0) { |
|
/* check whether new parameters are available */ |
|
if (global_data_parameter_storage->counter > pm_counter) { |
|
pid_set_parameters(&distance_controller, |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_P], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_I], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_D], |
|
global_data_parameter_storage->pm.param_values[PARAM_PID_POS_AWU]); |
|
|
|
// |
|
// pid_pos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_LIM]; |
|
// pid_pos_z_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_POS_Z_LIM]; |
|
|
|
pm_counter = global_data_parameter_storage->counter; |
|
printf("Position controller changed pid parameters\n"); |
|
} |
|
} |
|
|
|
global_data_unlock(&global_data_parameter_storage->access_conf); |
|
} |
|
|
|
|
|
/* Wait for new position estimate */ |
|
do { |
|
read_ret = read_lock_position(&position_estimated); |
|
} while (read_ret != 0); |
|
|
|
/* Get next waypoint */ //TODO: add local copy |
|
|
|
if (0 == global_data_trylock(&global_data_position_setpoint->access_conf)) { |
|
lat_next = global_data_position_setpoint->x; |
|
lon_next = global_data_position_setpoint->y; |
|
global_data_unlock(&global_data_position_setpoint->access_conf); |
|
} |
|
|
|
/* Get distance to waypoint */ |
|
float distance_to_waypoint = get_distance_to_next_waypoint(position_estimated.lat , position_estimated.lon, lat_next, lon_next); |
|
// if(counter % 5 == 0) |
|
// printf("distance_to_waypoint: %.4f\n", distance_to_waypoint); |
|
|
|
/* Get bearing to waypoint (direction on earth surface to next waypoint) */ |
|
float bearing = get_bearing_to_next_waypoint(position_estimated.lat, position_estimated.lon, lat_next, lon_next); |
|
|
|
if (counter % 5 == 0) |
|
printf("bearing: %.4f\n", bearing); |
|
|
|
/* Calculate speed in direction of bearing (needed for controller) */ |
|
float speed_norm = sqrtf(position_estimated.vx * position_estimated.vx + position_estimated.vy * position_estimated.vy); |
|
// if(counter % 5 == 0) |
|
// printf("speed_norm: %.4f\n", speed_norm); |
|
float speed_to_waypoint = 0; //(position_estimated.vx * cosf(bearing) + position_estimated.vy * sinf(bearing))/speed_norm; //FIXME, TODO: re-enable this once we have a full estimate of the speed, then we can do a PID for the distance controller |
|
|
|
/* Control Thrust in bearing direction */ |
|
float horizontal_thrust = -pid_calculate(&distance_controller, 0, distance_to_waypoint, speed_to_waypoint, |
|
CONTROL_PID_POSITION_INTERVAL); //TODO: maybe this "-" sign is an error somewhere else |
|
|
|
// if(counter % 5 == 0) |
|
// printf("horizontal thrust: %.4f\n", horizontal_thrust); |
|
|
|
/* Get total thrust (from remote for now) */ |
|
if (0 == global_data_trylock(&global_data_rc_channels->access_conf)) { |
|
thrust_total = (float)global_data_rc_channels->chan[THROTTLE].scale; //TODO: how should we use the RC_CHANNELS_FUNCTION enum? |
|
global_data_unlock(&global_data_rc_channels->access_conf); |
|
} |
|
|
|
const float max_gas = 500.0f; |
|
thrust_total *= max_gas / 20000.0f; //TODO: check this |
|
thrust_total += max_gas / 2.0f; |
|
|
|
|
|
if (horizontal_thrust > thrust_total) { |
|
horizontal_thrust = thrust_total; |
|
|
|
} else if (horizontal_thrust < -thrust_total) { |
|
horizontal_thrust = -thrust_total; |
|
} |
|
|
|
|
|
|
|
//TODO: maybe we want to add a speed controller later... |
|
|
|
/* Calclulate thrust in east and north direction */ |
|
float thrust_north = cosf(bearing) * horizontal_thrust; |
|
float thrust_east = sinf(bearing) * horizontal_thrust; |
|
|
|
if (counter % 10 == 0) { |
|
printf("thrust north: %.4f\n", thrust_north); |
|
printf("thrust east: %.4f\n", thrust_east); |
|
fflush(stdout); |
|
} |
|
|
|
/* Get current attitude */ |
|
if (0 == global_data_trylock(&global_data_attitude->access_conf)) { |
|
pitch_current = global_data_attitude->pitch; |
|
global_data_unlock(&global_data_attitude->access_conf); |
|
} |
|
|
|
/* Get desired pitch & roll */ |
|
float pitch_desired = 0.0f; |
|
float roll_desired = 0.0f; |
|
|
|
if (thrust_total != 0) { |
|
float pitch_fraction = -thrust_north / thrust_total; |
|
float roll_fraction = thrust_east / (cosf(pitch_current) * thrust_total); |
|
|
|
if (roll_fraction < -1) { |
|
roll_fraction = -1; |
|
|
|
} else if (roll_fraction > 1) { |
|
roll_fraction = 1; |
|
} |
|
|
|
// if(counter % 5 == 0) |
|
// { |
|
// printf("pitch_fraction: %.4f, roll_fraction: %.4f\n",pitch_fraction, roll_fraction); |
|
// fflush(stdout); |
|
// } |
|
|
|
pitch_desired = asinf(pitch_fraction); |
|
roll_desired = asinf(roll_fraction); |
|
} |
|
|
|
att_sp.roll = roll_desired; |
|
att_sp.pitch = pitch_desired; |
|
|
|
counter++; |
|
}
|
|
|