You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
937 lines
22 KiB
937 lines
22 KiB
/**************************************************************************** |
|
* |
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/** |
|
* @file hmc5883.cpp |
|
* |
|
* Driver for the HMC5883 magnetometer connected via I2C. |
|
*/ |
|
|
|
#include <nuttx/config.h> |
|
|
|
#include <drivers/device/i2c.h> |
|
|
|
#include <sys/types.h> |
|
#include <stdint.h> |
|
#include <stdlib.h> |
|
#include <stdbool.h> |
|
#include <semaphore.h> |
|
#include <string.h> |
|
#include <fcntl.h> |
|
#include <poll.h> |
|
#include <errno.h> |
|
#include <stdio.h> |
|
#include <math.h> |
|
#include <unistd.h> |
|
|
|
#include <nuttx/arch.h> |
|
#include <nuttx/wqueue.h> |
|
#include <nuttx/clock.h> |
|
|
|
#include <arch/board/up_hrt.h> |
|
|
|
#include <systemlib/perf_counter.h> |
|
#include <systemlib/err.h> |
|
|
|
#include <drivers/drv_mag.h> |
|
|
|
/* |
|
* HMC5883 internal constants and data structures. |
|
*/ |
|
|
|
/* Max measurement rate is 160Hz */ |
|
#define HMC5883_CONVERSION_INTERVAL (1000000 / 160) /* microseconds */ |
|
|
|
#define ADDR_CONF_A 0x00 |
|
#define ADDR_CONF_B 0x01 |
|
#define ADDR_MODE 0x02 |
|
#define ADDR_DATA_OUT_X_MSB 0x03 |
|
#define ADDR_DATA_OUT_X_LSB 0x04 |
|
#define ADDR_DATA_OUT_Z_MSB 0x05 |
|
#define ADDR_DATA_OUT_Z_LSB 0x06 |
|
#define ADDR_DATA_OUT_Y_MSB 0x07 |
|
#define ADDR_DATA_OUT_Y_LSB 0x08 |
|
#define ADDR_STATUS 0x09 |
|
#define ADDR_ID_A 0x0a |
|
#define ADDR_ID_B 0x0b |
|
#define ADDR_ID_C 0x0c |
|
|
|
#define HMC5883L_ADDRESS 0x1E |
|
|
|
/* modes not changeable outside of driver */ |
|
#define HMC5883L_MODE_NORMAL (0 << 0) /* default */ |
|
#define HMC5883L_MODE_POSITIVE_BIAS (1 << 0) /* positive bias */ |
|
#define HMC5883L_MODE_NEGATIVE_BIAS (1 << 1) /* negative bias */ |
|
|
|
#define HMC5883L_AVERAGING_1 (0 << 5) /* conf a register */ |
|
#define HMC5883L_AVERAGING_2 (1 << 5) |
|
#define HMC5883L_AVERAGING_4 (2 << 5) |
|
#define HMC5883L_AVERAGING_8 (3 << 5) |
|
|
|
#define MODE_REG_CONTINOUS_MODE (0 << 0) |
|
#define MODE_REG_SINGLE_MODE (1 << 0) /* default */ |
|
|
|
#define STATUS_REG_DATA_OUT_LOCK (1 << 1) /* page 16: set if data is only partially read, read device to reset */ |
|
#define STATUS_REG_DATA_READY (1 << 0) /* page 16: set if all axes have valid measurements */ |
|
|
|
#define ID_A_WHO_AM_I 'H' |
|
#define ID_B_WHO_AM_I '4' |
|
#define ID_C_WHO_AM_I '3' |
|
|
|
|
|
/* oddly, ERROR is not defined for c++ */ |
|
#ifdef ERROR |
|
# undef ERROR |
|
#endif |
|
static const int ERROR = -1; |
|
|
|
class HMC5883 : public device::I2C |
|
{ |
|
public: |
|
HMC5883(int bus); |
|
~HMC5883(); |
|
|
|
virtual int init(); |
|
|
|
virtual ssize_t read(struct file *filp, char *buffer, size_t buflen); |
|
virtual int ioctl(struct file *filp, int cmd, unsigned long arg); |
|
|
|
/** |
|
* Diagnostics - print some basic information about the driver. |
|
*/ |
|
void print_info(); |
|
|
|
protected: |
|
virtual int probe(); |
|
|
|
private: |
|
work_s _work; |
|
unsigned _measure_ticks; |
|
|
|
unsigned _num_reports; |
|
volatile unsigned _next_report; |
|
volatile unsigned _oldest_report; |
|
mag_report *_reports; |
|
mag_scale _scale; |
|
float _range_scale; |
|
float _range_ga; |
|
bool _collect_phase; |
|
|
|
orb_advert_t _mag_topic; |
|
|
|
perf_counter_t _sample_perf; |
|
perf_counter_t _comms_errors; |
|
perf_counter_t _buffer_overflows; |
|
|
|
/** |
|
* Test whether the device supported by the driver is present at a |
|
* specific address. |
|
* |
|
* @param address The I2C bus address to probe. |
|
* @return True if the device is present. |
|
*/ |
|
int probe_address(uint8_t address); |
|
|
|
/** |
|
* Initialise the automatic measurement state machine and start it. |
|
* |
|
* @note This function is called at open and error time. It might make sense |
|
* to make it more aggressive about resetting the bus in case of errors. |
|
*/ |
|
void start(); |
|
|
|
/** |
|
* Stop the automatic measurement state machine. |
|
*/ |
|
void stop(); |
|
|
|
/** |
|
* Perform a poll cycle; collect from the previous measurement |
|
* and start a new one. |
|
* |
|
* This is the heart of the measurement state machine. This function |
|
* alternately starts a measurement, or collects the data from the |
|
* previous measurement. |
|
* |
|
* When the interval between measurements is greater than the minimum |
|
* measurement interval, a gap is inserted between collection |
|
* and measurement to provide the most recent measurement possible |
|
* at the next interval. |
|
*/ |
|
void cycle(); |
|
|
|
/** |
|
* Static trampoline from the workq context; because we don't have a |
|
* generic workq wrapper yet. |
|
* |
|
* @param arg Instance pointer for the driver that is polling. |
|
*/ |
|
static void cycle_trampoline(void *arg); |
|
|
|
/** |
|
* Write a register. |
|
* |
|
* @param reg The register to write. |
|
* @param val The value to write. |
|
* @return OK on write success. |
|
*/ |
|
int write_reg(uint8_t reg, uint8_t val); |
|
|
|
/** |
|
* Read a register. |
|
* |
|
* @param reg The register to read. |
|
* @param val The value read. |
|
* @return OK on read success. |
|
*/ |
|
int read_reg(uint8_t reg, uint8_t &val); |
|
|
|
/** |
|
* Issue a measurement command. |
|
* |
|
* @return OK if the measurement command was successful. |
|
*/ |
|
int measure(); |
|
|
|
/** |
|
* Collect the result of the most recent measurement. |
|
*/ |
|
int collect(); |
|
|
|
/** |
|
* Convert a big-endian signed 16-bit value to a float. |
|
* |
|
* @param in A signed 16-bit big-endian value. |
|
* @return The floating-point representation of the value. |
|
*/ |
|
float meas_to_float(uint8_t in[2]); |
|
|
|
}; |
|
|
|
/* helper macro for handling report buffer indices */ |
|
#define INCREMENT(_x, _lim) do { _x++; if (_x >= _lim) _x = 0; } while(0) |
|
|
|
/* |
|
* Driver 'main' command. |
|
*/ |
|
extern "C" __EXPORT int hmc5883_main(int argc, char *argv[]); |
|
|
|
|
|
HMC5883::HMC5883(int bus) : |
|
I2C("HMC5883", MAG_DEVICE_PATH, bus, HMC5883L_ADDRESS, 400000), |
|
_measure_ticks(0), |
|
_num_reports(0), |
|
_next_report(0), |
|
_oldest_report(0), |
|
_reports(nullptr), |
|
_mag_topic(-1), |
|
_range_scale(1.0f / 1090.0f), /* default range scale from counts to gauss */ |
|
_range_ga(0.88f), |
|
_sample_perf(perf_alloc(PC_ELAPSED, "hmc5883_read")), |
|
_comms_errors(perf_alloc(PC_COUNT, "hmc5883_comms_errors")), |
|
_buffer_overflows(perf_alloc(PC_COUNT, "hmc5883_buffer_overflows")) |
|
{ |
|
// enable debug() calls |
|
_debug_enabled = true; |
|
|
|
// default scaling |
|
_scale.x_offset = 0; |
|
_scale.x_scale = 1.0f; |
|
_scale.y_offset = 0; |
|
_scale.y_scale = 1.0f; |
|
_scale.z_offset = 0; |
|
_scale.z_scale = 1.0f; |
|
|
|
// work_cancel in the dtor will explode if we don't do this... |
|
memset(&_work, 0, sizeof(_work)); |
|
} |
|
|
|
HMC5883::~HMC5883() |
|
{ |
|
/* make sure we are truly inactive */ |
|
stop(); |
|
|
|
/* free any existing reports */ |
|
if (_reports != nullptr) |
|
delete[] _reports; |
|
} |
|
|
|
int |
|
HMC5883::init() |
|
{ |
|
int ret = ERROR; |
|
|
|
/* do I2C init (and probe) first */ |
|
if (I2C::init() != OK) |
|
goto out; |
|
|
|
/* allocate basic report buffers */ |
|
_num_reports = 2; |
|
_reports = new struct mag_report[_num_reports]; |
|
if (_reports == nullptr) |
|
goto out; |
|
_oldest_report = _next_report = 0; |
|
|
|
/* get a publish handle on the mag topic */ |
|
memset(&_reports[0], 0, sizeof(_reports[0])); |
|
_mag_topic = orb_advertise(ORB_ID(sensor_mag), &_reports[0]); |
|
if (_mag_topic < 0) |
|
debug("failed to create sensor_mag object"); |
|
|
|
ret = OK; |
|
out: |
|
return ret; |
|
} |
|
|
|
int |
|
HMC5883::probe() |
|
{ |
|
uint8_t data[3] = {0, 0, 0}; |
|
|
|
_retries = 10; |
|
if (read_reg(ADDR_ID_A, data[0]) || |
|
read_reg(ADDR_ID_B, data[1]) || |
|
read_reg(ADDR_ID_C, data[2])) |
|
debug("read_reg fail"); |
|
_retries = 1; |
|
|
|
if ((data[0] != ID_A_WHO_AM_I) || |
|
(data[1] != ID_B_WHO_AM_I) || |
|
(data[2] != ID_C_WHO_AM_I)) { |
|
debug("ID byte mismatch (%02x,%02x,%02x)", data[0], data[1], data[2]); |
|
return -EIO; |
|
} |
|
|
|
return OK; |
|
} |
|
|
|
ssize_t |
|
HMC5883::read(struct file *filp, char *buffer, size_t buflen) |
|
{ |
|
unsigned count = buflen / sizeof(struct mag_report); |
|
int ret = 0; |
|
|
|
/* buffer must be large enough */ |
|
if (count < 1) |
|
return -ENOSPC; |
|
|
|
/* if automatic measurement is enabled */ |
|
if (_measure_ticks > 0) { |
|
|
|
/* |
|
* While there is space in the caller's buffer, and reports, copy them. |
|
* Note that we may be pre-empted by the workq thread while we are doing this; |
|
* we are careful to avoid racing with them. |
|
*/ |
|
while (count--) { |
|
if (_oldest_report != _next_report) { |
|
memcpy(buffer, _reports + _oldest_report, sizeof(*_reports)); |
|
ret += sizeof(_reports[0]); |
|
INCREMENT(_oldest_report, _num_reports); |
|
} |
|
} |
|
|
|
/* if there was no data, warn the caller */ |
|
return ret ? ret : -EAGAIN; |
|
} |
|
|
|
/* manual measurement - run one conversion */ |
|
/* XXX really it'd be nice to lock against other readers here */ |
|
do { |
|
_oldest_report = _next_report = 0; |
|
|
|
/* trigger a measurement */ |
|
if (OK != measure()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
/* wait for it to complete */ |
|
usleep(HMC5883_CONVERSION_INTERVAL); |
|
|
|
/* run the collection phase */ |
|
if (OK != collect()) { |
|
ret = -EIO; |
|
break; |
|
} |
|
|
|
/* state machine will have generated a report, copy it out */ |
|
memcpy(buffer, _reports, sizeof(*_reports)); |
|
ret = sizeof(*_reports); |
|
|
|
} while (0); |
|
|
|
return ret; |
|
} |
|
|
|
int |
|
HMC5883::ioctl(struct file *filp, int cmd, unsigned long arg) |
|
{ |
|
switch (cmd) { |
|
|
|
case SENSORIOCSPOLLRATE: { |
|
switch (arg) { |
|
|
|
/* switching to manual polling */ |
|
case SENSOR_POLLRATE_MANUAL: |
|
stop(); |
|
_measure_ticks = 0; |
|
return OK; |
|
|
|
/* external signalling (DRDY) not supported */ |
|
case SENSOR_POLLRATE_EXTERNAL: |
|
|
|
/* zero would be bad */ |
|
case 0: |
|
return -EINVAL; |
|
|
|
/* set default/max polling rate */ |
|
case SENSOR_POLLRATE_MAX: |
|
case SENSOR_POLLRATE_DEFAULT: { |
|
/* do we need to start internal polling? */ |
|
bool want_start = (_measure_ticks == 0); |
|
|
|
/* set interval for next measurement to minimum legal value */ |
|
_measure_ticks = USEC2TICK(HMC5883_CONVERSION_INTERVAL); |
|
|
|
/* if we need to start the poll state machine, do it */ |
|
if (want_start) |
|
start(); |
|
|
|
return OK; |
|
} |
|
|
|
/* adjust to a legal polling interval in Hz */ |
|
default: { |
|
/* do we need to start internal polling? */ |
|
bool want_start = (_measure_ticks == 0); |
|
|
|
/* convert hz to tick interval via microseconds */ |
|
unsigned ticks = USEC2TICK(1000000 / arg); |
|
|
|
/* check against maximum rate */ |
|
if (ticks < USEC2TICK(HMC5883_CONVERSION_INTERVAL)) |
|
return -EINVAL; |
|
|
|
/* update interval for next measurement */ |
|
_measure_ticks = ticks; |
|
|
|
/* if we need to start the poll state machine, do it */ |
|
if (want_start) |
|
start(); |
|
|
|
return OK; |
|
} |
|
} |
|
} |
|
|
|
case SENSORIOCGPOLLRATE: |
|
if (_measure_ticks == 0) |
|
return SENSOR_POLLRATE_MANUAL; |
|
return (1000 / _measure_ticks); |
|
|
|
case SENSORIOCSQUEUEDEPTH: { |
|
/* add one to account for the sentinel in the ring */ |
|
arg++; |
|
|
|
/* lower bound is mandatory, upper bound is a sanity check */ |
|
if ((arg < 2) || (arg > 100)) |
|
return -EINVAL; |
|
|
|
/* allocate new buffer */ |
|
struct mag_report *buf = new struct mag_report[arg]; |
|
|
|
if (nullptr == buf) |
|
return -ENOMEM; |
|
|
|
/* reset the measurement state machine with the new buffer, free the old */ |
|
stop(); |
|
delete[] _reports; |
|
_num_reports = arg; |
|
_reports = buf; |
|
start(); |
|
|
|
return OK; |
|
} |
|
|
|
case SENSORIOCGQUEUEDEPTH: |
|
return _num_reports - 1; |
|
|
|
case SENSORIOCRESET: |
|
/* XXX implement this */ |
|
return -EINVAL; |
|
|
|
case MAGIOCSSAMPLERATE: |
|
/* not supported, always 1 sample per poll */ |
|
return -EINVAL; |
|
|
|
case MAGIOCSLOWPASS: |
|
/* not supported, no internal filtering */ |
|
return -EINVAL; |
|
|
|
case MAGIOCSSCALE: |
|
/* set new scale factors */ |
|
memcpy(&_scale, (mag_scale *)arg, sizeof(_scale)); |
|
return 0; |
|
|
|
case MAGIOCGSCALE: |
|
/* copy out scale factors */ |
|
memcpy((mag_scale *)arg, &_scale, sizeof(_scale)); |
|
return 0; |
|
|
|
case MAGIOCCALIBRATE: |
|
/* XXX perform auto-calibration */ |
|
return -EINVAL; |
|
|
|
default: |
|
/* give it to the superclass */ |
|
return I2C::ioctl(filp, cmd, arg); |
|
} |
|
} |
|
|
|
void |
|
HMC5883::start() |
|
{ |
|
/* reset the report ring and state machine */ |
|
_collect_phase = false; |
|
_oldest_report = _next_report = 0; |
|
|
|
/* schedule a cycle to start things */ |
|
work_queue(HPWORK, &_work, (worker_t)&HMC5883::cycle_trampoline, this, 1); |
|
} |
|
|
|
void |
|
HMC5883::stop() |
|
{ |
|
work_cancel(HPWORK, &_work); |
|
} |
|
|
|
void |
|
HMC5883::cycle_trampoline(void *arg) |
|
{ |
|
HMC5883 *dev = (HMC5883 *)arg; |
|
|
|
dev->cycle(); |
|
} |
|
|
|
void |
|
HMC5883::cycle() |
|
{ |
|
/* collection phase? */ |
|
if (_collect_phase) { |
|
|
|
/* perform collection */ |
|
if (OK != collect()) { |
|
log("collection error"); |
|
/* restart the measurement state machine */ |
|
start(); |
|
return; |
|
} |
|
|
|
/* next phase is measurement */ |
|
_collect_phase = false; |
|
|
|
/* |
|
* Is there a collect->measure gap? |
|
*/ |
|
if (_measure_ticks > USEC2TICK(HMC5883_CONVERSION_INTERVAL)) { |
|
|
|
/* schedule a fresh cycle call when we are ready to measure again */ |
|
work_queue(HPWORK, |
|
&_work, |
|
(worker_t)&HMC5883::cycle_trampoline, |
|
this, |
|
_measure_ticks - USEC2TICK(HMC5883_CONVERSION_INTERVAL)); |
|
|
|
return; |
|
} |
|
} |
|
|
|
/* measurement phase */ |
|
if (OK != measure()) |
|
log("measure error"); |
|
|
|
/* next phase is collection */ |
|
_collect_phase = true; |
|
|
|
/* schedule a fresh cycle call when the measurement is done */ |
|
work_queue(HPWORK, |
|
&_work, |
|
(worker_t)&HMC5883::cycle_trampoline, |
|
this, |
|
USEC2TICK(HMC5883_CONVERSION_INTERVAL)); |
|
} |
|
|
|
int |
|
HMC5883::measure() |
|
{ |
|
int ret; |
|
|
|
/* |
|
* Send the command to begin a measurement. |
|
*/ |
|
ret = write_reg(ADDR_MODE, MODE_REG_SINGLE_MODE); |
|
|
|
if (OK != ret) |
|
perf_count(_comms_errors); |
|
|
|
return ret; |
|
} |
|
|
|
int |
|
HMC5883::collect() |
|
{ |
|
#pragma pack(push, 1) |
|
struct { /* status register and data as read back from the device */ |
|
uint8_t x[2]; |
|
uint8_t z[2]; |
|
uint8_t y[2]; |
|
} hmc_report; |
|
#pragma pack(pop) |
|
struct { |
|
int16_t x, y, z; |
|
} report; |
|
int ret = -EIO; |
|
uint8_t cmd; |
|
|
|
|
|
perf_begin(_sample_perf); |
|
|
|
/* this should be fairly close to the end of the measurement, so the best approximation of the time */ |
|
_reports[_next_report].timestamp = hrt_absolute_time(); |
|
|
|
/* |
|
* @note We could read the status register here, which could tell us that |
|
* we were too early and that the output registers are still being |
|
* written. In the common case that would just slow us down, and |
|
* we're better off just never being early. |
|
*/ |
|
|
|
/* get measurements from the device */ |
|
cmd = ADDR_DATA_OUT_X_MSB; |
|
ret = transfer(&cmd, 1, (uint8_t *)&hmc_report, sizeof(hmc_report)); |
|
|
|
if (ret != OK) { |
|
perf_count(_comms_errors); |
|
debug("data/status read error"); |
|
goto out; |
|
} |
|
|
|
/* swap the data we just received */ |
|
report.x = (((int16_t)hmc_report.x[0]) << 8) + hmc_report.x[1]; |
|
report.y = (((int16_t)hmc_report.y[0]) << 8) + hmc_report.y[1]; |
|
report.z = (((int16_t)hmc_report.z[0]) << 8) + hmc_report.z[1]; |
|
|
|
/* |
|
* If any of the values are -4096, there was an internal math error in the sensor. |
|
* Generalise this to a simple range check that will also catch some bit errors. |
|
*/ |
|
if ((abs(report.x) > 2048) || |
|
(abs(report.y) > 2048) || |
|
(abs(report.z) > 2048)) |
|
goto out; |
|
|
|
/* |
|
* RAW outputs |
|
* |
|
* to align the sensor axes with the board, x and y need to be flipped |
|
* and y needs to be negated |
|
*/ |
|
_reports[_next_report].x_raw = report.y; |
|
_reports[_next_report].y_raw = ((report.x == -32768) ? 32767 : -report.x); |
|
/* z remains z */ |
|
_reports[_next_report].z_raw = report.z; |
|
|
|
/* scale values for output */ |
|
|
|
/* |
|
* 1) Scale raw value to SI units using scaling from datasheet. |
|
* 2) Subtract static offset (in SI units) |
|
* 3) Scale the statically calibrated values with a linear |
|
* dynamically obtained factor |
|
* |
|
* Note: the static sensor offset is the number the sensor outputs |
|
* at a nominally 'zero' input. Therefore the offset has to |
|
* be subtracted. |
|
* |
|
* Example: A gyro outputs a value of 74 at zero angular rate |
|
* the offset is 74 from the origin and subtracting |
|
* 74 from all measurements centers them around zero. |
|
*/ |
|
|
|
/* to align the sensor axes with the board, x and y need to be flipped */ |
|
_reports[_next_report].x = ((report.y * _range_scale) - _scale.x_offset) * _scale.x_scale; |
|
/* flip axes and negate value for y */ |
|
_reports[_next_report].y = ((((report.x == -32768) ? 32767 : -report.x) * _range_scale) - _scale.y_offset) * _scale.y_scale; |
|
/* z remains z */ |
|
_reports[_next_report].z = ((report.z * _range_scale) - _scale.z_offset) * _scale.z_scale; |
|
|
|
/* publish it */ |
|
orb_publish(ORB_ID(sensor_mag), _mag_topic, &_reports[_next_report]); |
|
|
|
/* post a report to the ring - note, not locked */ |
|
INCREMENT(_next_report, _num_reports); |
|
|
|
/* if we are running up against the oldest report, toss it */ |
|
if (_next_report == _oldest_report) { |
|
perf_count(_buffer_overflows); |
|
INCREMENT(_oldest_report, _num_reports); |
|
} |
|
|
|
/* notify anyone waiting for data */ |
|
poll_notify(POLLIN); |
|
|
|
ret = OK; |
|
|
|
out: |
|
perf_end(_sample_perf); |
|
return ret; |
|
} |
|
|
|
int |
|
HMC5883::write_reg(uint8_t reg, uint8_t val) |
|
{ |
|
uint8_t cmd[] = { reg, val }; |
|
|
|
return transfer(&cmd[0], 2, nullptr, 0); |
|
} |
|
|
|
int |
|
HMC5883::read_reg(uint8_t reg, uint8_t &val) |
|
{ |
|
return transfer(®, 1, &val, 1); |
|
} |
|
|
|
float |
|
HMC5883::meas_to_float(uint8_t in[2]) |
|
{ |
|
union { |
|
uint8_t b[2]; |
|
int16_t w; |
|
} u; |
|
|
|
u.b[0] = in[1]; |
|
u.b[1] = in[0]; |
|
|
|
return (float) u.w; |
|
} |
|
|
|
void |
|
HMC5883::print_info() |
|
{ |
|
perf_print_counter(_sample_perf); |
|
perf_print_counter(_comms_errors); |
|
perf_print_counter(_buffer_overflows); |
|
printf("poll interval: %u ticks\n", _measure_ticks); |
|
printf("report queue: %u (%u/%u @ %p)\n", |
|
_num_reports, _oldest_report, _next_report, _reports); |
|
} |
|
|
|
/** |
|
* Local functions in support of the shell command. |
|
*/ |
|
namespace hmc5883 |
|
{ |
|
|
|
/* oddly, ERROR is not defined for c++ */ |
|
#ifdef ERROR |
|
# undef ERROR |
|
#endif |
|
const int ERROR = -1; |
|
|
|
HMC5883 *g_dev; |
|
|
|
void start(); |
|
void test(); |
|
void reset(); |
|
void info(); |
|
|
|
/** |
|
* Start the driver. |
|
*/ |
|
void |
|
start() |
|
{ |
|
int fd; |
|
|
|
if (g_dev != nullptr) |
|
errx(1, "already started"); |
|
|
|
/* create the driver */ |
|
/* XXX HORRIBLE hack - the bus number should not come from here */ |
|
g_dev = new HMC5883(2); |
|
|
|
if (g_dev == nullptr) |
|
goto fail; |
|
|
|
if (OK != g_dev->init()) |
|
goto fail; |
|
|
|
/* set the poll rate to default, starts automatic data collection */ |
|
fd = open(MAG_DEVICE_PATH, O_RDONLY); |
|
if (fd < 0) |
|
goto fail; |
|
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) |
|
goto fail; |
|
exit(0); |
|
|
|
fail: |
|
if (g_dev != nullptr) { |
|
delete g_dev; |
|
g_dev = nullptr; |
|
} |
|
errx(1, "driver start failed"); |
|
} |
|
|
|
/** |
|
* Perform some basic functional tests on the driver; |
|
* make sure we can collect data from the sensor in polled |
|
* and automatic modes. |
|
*/ |
|
void |
|
test() |
|
{ |
|
struct mag_report report; |
|
ssize_t sz; |
|
int ret; |
|
|
|
int fd = open(MAG_DEVICE_PATH, O_RDONLY); |
|
if (fd < 0) |
|
err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH); |
|
|
|
/* do a simple demand read */ |
|
sz = read(fd, &report, sizeof(report)); |
|
if (sz != sizeof(report)) |
|
err(1, "immediate read failed"); |
|
|
|
warnx("single read"); |
|
warnx("measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z); |
|
warnx("time: %lld", report.timestamp); |
|
|
|
/* set the queue depth to 10 */ |
|
if (OK != ioctl(fd, SENSORIOCSQUEUEDEPTH, 10)) |
|
errx(1, "failed to set queue depth"); |
|
|
|
/* start the sensor polling at 2Hz */ |
|
if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2)) |
|
errx(1, "failed to set 2Hz poll rate"); |
|
|
|
/* read the sensor 5x and report each value */ |
|
for (unsigned i = 0; i < 5; i++) { |
|
struct pollfd fds; |
|
|
|
/* wait for data to be ready */ |
|
fds.fd = fd; |
|
fds.events = POLLIN; |
|
ret = poll(&fds, 1, 2000); |
|
|
|
if (ret != 1) |
|
errx(1, "timed out waiting for sensor data"); |
|
|
|
/* now go get it */ |
|
sz = read(fd, &report, sizeof(report)); |
|
|
|
if (sz != sizeof(report)) |
|
err(1, "periodic read failed"); |
|
|
|
warnx("periodic read %u", i); |
|
warnx("measurement: %.6f %.6f %.6f", (double)report.x, (double)report.y, (double)report.z); |
|
warnx("time: %lld", report.timestamp); |
|
} |
|
|
|
errx(0, "PASS"); |
|
} |
|
|
|
/** |
|
* Reset the driver. |
|
*/ |
|
void |
|
reset() |
|
{ |
|
int fd = open(MAG_DEVICE_PATH, O_RDONLY); |
|
if (fd < 0) |
|
err(1, "failed "); |
|
if (ioctl(fd, SENSORIOCRESET, 0) < 0) |
|
err(1, "driver reset failed"); |
|
if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0) |
|
err(1, "driver poll restart failed"); |
|
|
|
exit(0); |
|
} |
|
|
|
/** |
|
* Print a little info about the driver. |
|
*/ |
|
void |
|
info() |
|
{ |
|
if (g_dev == nullptr) |
|
errx(1, "driver not running"); |
|
|
|
printf("state @ %p\n", g_dev); |
|
g_dev->print_info(); |
|
|
|
exit(0); |
|
} |
|
|
|
} // namespace |
|
|
|
int |
|
hmc5883_main(int argc, char *argv[]) |
|
{ |
|
/* |
|
* Start/load the driver. |
|
*/ |
|
if (!strcmp(argv[1], "start")) |
|
hmc5883::start(); |
|
|
|
/* |
|
* Test the driver/device. |
|
*/ |
|
if (!strcmp(argv[1], "test")) |
|
hmc5883::test(); |
|
|
|
/* |
|
* Reset the driver. |
|
*/ |
|
if (!strcmp(argv[1], "reset")) |
|
hmc5883::reset(); |
|
|
|
/* |
|
* Print driver information. |
|
*/ |
|
if (!strcmp(argv[1], "info")) |
|
hmc5883::info(); |
|
|
|
errx(1, "unrecognised command, try 'start', 'test', 'reset' or 'info'"); |
|
}
|
|
|