You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
545 lines
17 KiB
545 lines
17 KiB
/**************************************************************************** |
|
* netuip/uip_input.c |
|
* The uIP TCP/IP stack code. |
|
* |
|
* Copyright (C) 2007-2009, 2012 Gregory Nutt. All rights reserved. |
|
* Author: Gregory Nutt <gnutt@nuttx.org> |
|
* |
|
* Adapted for NuttX from logic in uIP which also has a BSD-like license: |
|
* |
|
* uIP is an implementation of the TCP/IP protocol stack intended for |
|
* small 8-bit and 16-bit microcontrollers. |
|
* |
|
* uIP provides the necessary protocols for Internet communication, |
|
* with a very small code footprint and RAM requirements - the uIP |
|
* code size is on the order of a few kilobytes and RAM usage is on |
|
* the order of a few hundred bytes. |
|
* |
|
* Original author Adam Dunkels <adam@dunkels.com> |
|
* Copyright () 2001-2003, Adam Dunkels. |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* 3. The name of the author may not be used to endorse or promote |
|
* products derived from this software without specific prior |
|
* written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS |
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
|
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE |
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* uIP is a small implementation of the IP, UDP and TCP protocols (as |
|
* well as some basic ICMP stuff). The implementation couples the IP, |
|
* UDP, TCP and the application layers very tightly. To keep the size |
|
* of the compiled code down, this code frequently uses the goto |
|
* statement. While it would be possible to break the uip_input() |
|
* function into many smaller functions, this would increase the code |
|
* size because of the overhead of parameter passing and the fact that |
|
* the optimier would not be as efficient. |
|
* |
|
* The principle is that we have a small buffer, called the d_buf, |
|
* in which the device driver puts an incoming packet. The TCP/IP |
|
* stack parses the headers in the packet, and calls the |
|
* application. If the remote host has sent data to the application, |
|
* this data is present in the d_buf and the application read the |
|
* data from there. It is up to the application to put this data into |
|
* a byte stream if needed. The application will not be fed with data |
|
* that is out of sequence. |
|
* |
|
* If the application whishes to send data to the peer, it should put |
|
* its data into the d_buf. The d_appdata pointer points to the |
|
* first available byte. The TCP/IP stack will calculate the |
|
* checksums, and fill in the necessary header fields and finally send |
|
* the packet back to the peer. |
|
* |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Included Files |
|
****************************************************************************/ |
|
|
|
#include <nuttx/config.h> |
|
#ifdef CONFIG_NET |
|
|
|
#include <sys/ioctl.h> |
|
#include <stdint.h> |
|
#include <debug.h> |
|
#include <string.h> |
|
|
|
#include <nuttx/net/uip/uipopt.h> |
|
#include <nuttx/net/uip/uip.h> |
|
#include <nuttx/net/uip/uip-arch.h> |
|
|
|
#ifdef CONFIG_NET_IPv6 |
|
# include "uip_neighbor.h" |
|
#endif /* CONFIG_NET_IPv6 */ |
|
|
|
#include "uip_internal.h" |
|
|
|
/**************************************************************************** |
|
* Pre-processor Definitions |
|
****************************************************************************/ |
|
|
|
/* Macros. */ |
|
|
|
#define BUF ((struct uip_ip_hdr *)&dev->d_buf[UIP_LLH_LEN]) |
|
#define FBUF ((struct uip_ip_hdr *)&uip_reassbuf[0]) |
|
|
|
/* IP fragment re-assembly */ |
|
|
|
#define IP_MF 0x20 |
|
#define UIP_REASS_BUFSIZE (CONFIG_NET_BUFSIZE - UIP_LLH_LEN) |
|
#define UIP_REASS_FLAG_LASTFRAG 0x01 |
|
|
|
/**************************************************************************** |
|
* Public Variables |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Private Variables |
|
****************************************************************************/ |
|
|
|
#if UIP_REASSEMBLY && !defined(CONFIG_NET_IPv6) |
|
static uint8_t uip_reassbuf[UIP_REASS_BUFSIZE]; |
|
static uint8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)]; |
|
static const uint8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f, 0x0f, 0x07, 0x03, 0x01}; |
|
static uint16_t uip_reasslen; |
|
static uint8_t uip_reassflags; |
|
#endif /* UIP_REASSEMBLY */ |
|
|
|
/**************************************************************************** |
|
* Private Functions |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Function: uip_reass |
|
* |
|
* Description: |
|
* IP fragment reassembly: not well-tested. |
|
* |
|
* Assumptions: |
|
* |
|
****************************************************************************/ |
|
|
|
#if UIP_REASSEMBLY && !defined(CONFIG_NET_IPv6) |
|
static uint8_t uip_reass(void) |
|
{ |
|
struct uip_ip_hdr *pbuf = BUF; |
|
struct uip_ip_hdr *pfbuf = FBUF; |
|
uint16_t offset; |
|
uint16_t len; |
|
uint16_t i; |
|
|
|
/* If uip_reasstmr is zero, no packet is present in the buffer, so we |
|
* write the IP header of the fragment into the reassembly |
|
* buffer. The timer is updated with the maximum age. |
|
*/ |
|
|
|
if (!uip_reasstmr) |
|
{ |
|
memcpy(uip_reassbuf, &pbuf->vhl, UIP_IPH_LEN); |
|
uip_reasstmr = UIP_REASS_MAXAGE; |
|
uip_reassflags = 0; |
|
|
|
/* Clear the bitmap. */ |
|
|
|
memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap)); |
|
} |
|
|
|
/* Check if the incoming fragment matches the one currently present |
|
* in the reasembly buffer. If so, we proceed with copying the |
|
* fragment into the buffer. |
|
*/ |
|
|
|
if (uiphdr_addr_cmp(pbuf->srcipaddr, pfbuf->srcipaddr) && |
|
uiphdr_addr_cmp(pbuf->destipaddr == pfbuf->destipaddr) && |
|
pbuf->g_ipid[0] == pfbuf->g_ipid[0] && pbuf->g_ipid[1] == pfbuf->g_ipid[1]) |
|
{ |
|
len = (pbuf->len[0] << 8) + pbuf->len[1] - (pbuf->vhl & 0x0f) * 4; |
|
offset = (((pbuf->ipoffset[0] & 0x3f) << 8) + pbuf->ipoffset[1]) * 8; |
|
|
|
/* If the offset or the offset + fragment length overflows the |
|
* reassembly buffer, we discard the entire packet. |
|
*/ |
|
|
|
if (offset > UIP_REASS_BUFSIZE || offset + len > UIP_REASS_BUFSIZE) |
|
{ |
|
uip_reasstmr = 0; |
|
goto nullreturn; |
|
} |
|
|
|
/* Copy the fragment into the reassembly buffer, at the right offset. */ |
|
|
|
memcpy(&uip_reassbuf[UIP_IPH_LEN + offset], (char *)pbuf + (int)((pbuf->vhl & 0x0f) * 4), len); |
|
|
|
/* Update the bitmap. */ |
|
|
|
if (offset / (8 * 8) == (offset + len) / (8 * 8)) |
|
{ |
|
/* If the two endpoints are in the same byte, we only update that byte. */ |
|
|
|
uip_reassbitmap[offset / (8 * 8)] |= |
|
bitmap_bits[(offset / 8 ) & 7] & ~bitmap_bits[((offset + len) / 8 ) & 7]; |
|
|
|
} |
|
else |
|
{ |
|
/* If the two endpoints are in different bytes, we update the bytes |
|
* in the endpoints and fill the stuff inbetween with 0xff. |
|
*/ |
|
|
|
uip_reassbitmap[offset / (8 * 8)] |= bitmap_bits[(offset / 8 ) & 7]; |
|
for (i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) |
|
{ |
|
uip_reassbitmap[i] = 0xff; |
|
} |
|
uip_reassbitmap[(offset + len) / (8 * 8)] |= ~bitmap_bits[((offset + len) / 8 ) & 7]; |
|
} |
|
|
|
/* If this fragment has the More Fragments flag set to zero, we know that |
|
* this is the last fragment, so we can calculate the size of the entire |
|
* packet. We also set the IP_REASS_FLAG_LASTFRAG flag to indicate that |
|
* we have received the final fragment. |
|
*/ |
|
|
|
if ((pbuf->ipoffset[0] & IP_MF) == 0) |
|
{ |
|
uip_reassflags |= UIP_REASS_FLAG_LASTFRAG; |
|
uip_reasslen = offset + len; |
|
} |
|
|
|
/* Finally, we check if we have a full packet in the buffer. We do this |
|
* by checking if we have the last fragment and if all bits in the bitmap |
|
* are set. |
|
*/ |
|
|
|
if (uip_reassflags & UIP_REASS_FLAG_LASTFRAG) |
|
{ |
|
/* Check all bytes up to and including all but the last byte in |
|
* the bitmap. |
|
*/ |
|
|
|
for (i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) |
|
{ |
|
if (uip_reassbitmap[i] != 0xff) |
|
{ |
|
goto nullreturn; |
|
} |
|
} |
|
|
|
/* Check the last byte in the bitmap. It should contain just the |
|
* right amount of bits. |
|
*/ |
|
|
|
if (uip_reassbitmap[uip_reasslen / (8 * 8)] != (uint8_t)~bitmap_bits[uip_reasslen / 8 & 7]) |
|
{ |
|
goto nullreturn; |
|
} |
|
|
|
/* If we have come this far, we have a full packet in the buffer, |
|
* so we allocate a pbuf and copy the packet into it. We also reset |
|
* the timer. |
|
*/ |
|
|
|
uip_reasstmr = 0; |
|
memcpy(pbuf, pfbuf, uip_reasslen); |
|
|
|
/* Pretend to be a "normal" (i.e., not fragmented) IP packet from |
|
* now on. |
|
*/ |
|
|
|
pbuf->ipoffset[0] = pbuf->ipoffset[1] = 0; |
|
pbuf->len[0] = uip_reasslen >> 8; |
|
pbuf->len[1] = uip_reasslen & 0xff; |
|
pbuf->ipchksum = 0; |
|
pbuf->ipchksum = ~(uip_ipchksum(dev)); |
|
|
|
return uip_reasslen; |
|
} |
|
} |
|
|
|
nullreturn: |
|
return 0; |
|
} |
|
#endif /* UIP_REASSEMBLY */ |
|
|
|
/**************************************************************************** |
|
* Public Functions |
|
****************************************************************************/ |
|
|
|
/**************************************************************************** |
|
* Function: uip_input |
|
* |
|
* Description: |
|
* |
|
* Assumptions: |
|
* |
|
****************************************************************************/ |
|
|
|
void uip_input(struct uip_driver_s *dev) |
|
{ |
|
struct uip_ip_hdr *pbuf = BUF; |
|
uint16_t iplen; |
|
|
|
/* This is where the input processing starts. */ |
|
|
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.recv++; |
|
#endif |
|
|
|
/* Start of IP input header processing code. */ |
|
|
|
#ifdef CONFIG_NET_IPv6 |
|
/* Check validity of the IP header. */ |
|
|
|
if ((pbuf->vtc & 0xf0) != 0x60) |
|
{ |
|
/* IP version and header length. */ |
|
|
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
uip_stat.ip.vhlerr++; |
|
#endif |
|
nlldbg("Invalid IPv6 version: %d\n", pbuf->vtc >> 4); |
|
goto drop; |
|
} |
|
#else /* CONFIG_NET_IPv6 */ |
|
/* Check validity of the IP header. */ |
|
|
|
if (pbuf->vhl != 0x45) |
|
{ |
|
/* IP version and header length. */ |
|
|
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
uip_stat.ip.vhlerr++; |
|
#endif |
|
nlldbg("Invalid IP version or header length: %02x\n", pbuf->vhl); |
|
goto drop; |
|
} |
|
#endif /* CONFIG_NET_IPv6 */ |
|
|
|
/* Check the size of the packet. If the size reported to us in d_len is |
|
* smaller the size reported in the IP header, we assume that the packet |
|
* has been corrupted in transit. If the size of d_len is larger than the |
|
* size reported in the IP packet header, the packet has been padded and |
|
* we set d_len to the correct value. |
|
*/ |
|
|
|
#ifdef CONFIG_NET_IPv6 |
|
/* The length reported in the IPv6 header is the length of the payload |
|
* that follows the header. However, uIP uses the d_len variable for |
|
* holding the size of the entire packet, including the IP header. For |
|
* IPv4 this is not a problem as the length field in the IPv4 header |
|
* contains the length of the entire packet. But for IPv6 we need to add |
|
* the size of the IPv6 header (40 bytes). |
|
*/ |
|
|
|
iplen = (pbuf->len[0] << 8) + pbuf->len[1] + UIP_IPH_LEN; |
|
#else |
|
iplen = (pbuf->len[0] << 8) + pbuf->len[1]; |
|
#endif /* CONFIG_NET_IPv6 */ |
|
|
|
if (iplen <= dev->d_len) |
|
{ |
|
dev->d_len = iplen; |
|
} |
|
else |
|
{ |
|
nlldbg("IP packet shorter than length in IP header\n"); |
|
goto drop; |
|
} |
|
|
|
#ifndef CONFIG_NET_IPv6 |
|
/* Check the fragment flag. */ |
|
|
|
if ((pbuf->ipoffset[0] & 0x3f) != 0 || pbuf->ipoffset[1] != 0) |
|
{ |
|
#if UIP_REASSEMBLY |
|
dev->d_len = uip_reass(); |
|
if (dev->d_len == 0) |
|
{ |
|
goto drop; |
|
} |
|
#else /* UIP_REASSEMBLY */ |
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
uip_stat.ip.fragerr++; |
|
#endif |
|
nlldbg("IP fragment dropped\n"); |
|
goto drop; |
|
#endif /* UIP_REASSEMBLY */ |
|
} |
|
#endif /* CONFIG_NET_IPv6 */ |
|
|
|
/* If IP broadcast support is configured, we check for a broadcast |
|
* UDP packet, which may be destined to us (even if there is no IP |
|
* address yet assigned to the device as is the case when we are |
|
* negotiating over DHCP for an address). |
|
*/ |
|
|
|
#if defined(CONFIG_NET_BROADCAST) && defined(CONFIG_NET_UDP) |
|
if (pbuf->proto == UIP_PROTO_UDP && |
|
#ifndef CONFIG_NET_IPv6 |
|
uip_ipaddr_cmp(uip_ip4addr_conv(pbuf->destipaddr), g_alloneaddr)) |
|
#else |
|
uip_ipaddr_cmp(pbuf->destipaddr, g_alloneaddr)) |
|
#endif |
|
{ |
|
uip_udpinput(dev); |
|
return; |
|
} |
|
|
|
/* In most other cases, the device must be assigned a non-zero IP |
|
* address. Another exception is when CONFIG_NET_PINGADDRCONF is |
|
* enabled... |
|
*/ |
|
|
|
else |
|
#endif |
|
#ifdef CONFIG_NET_ICMP |
|
if (uip_ipaddr_cmp(dev->d_ipaddr, g_allzeroaddr)) |
|
{ |
|
/* If we are configured to use ping IP address configuration and |
|
* hasn't been assigned an IP address yet, we accept all ICMP |
|
* packets. |
|
*/ |
|
|
|
#if defined(CONFIG_NET_PINGADDRCONF) && !defined(CONFIG_NET_IPv6) |
|
if (pbuf->proto == UIP_PROTO_ICMP) |
|
{ |
|
nlldbg("Possible ping config packet received\n"); |
|
uip_icmpinput(dev); |
|
goto done; |
|
} |
|
else |
|
#endif |
|
{ |
|
nlldbg("No IP address assigned\n"); |
|
goto drop; |
|
} |
|
} |
|
|
|
/* Check if the packet is destined for out IP address */ |
|
else |
|
#endif |
|
{ |
|
/* Check if the packet is destined for our IP address. */ |
|
#ifndef CONFIG_NET_IPv6 |
|
if (!uip_ipaddr_cmp(uip_ip4addr_conv(pbuf->destipaddr), dev->d_ipaddr)) |
|
{ |
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
#endif |
|
goto drop; |
|
} |
|
#else /* CONFIG_NET_IPv6 */ |
|
/* For IPv6, packet reception is a little trickier as we need to |
|
* make sure that we listen to certain multicast addresses (all |
|
* hosts multicast address, and the solicited-node multicast |
|
* address) as well. However, we will cheat here and accept all |
|
* multicast packets that are sent to the ff02::/16 addresses. |
|
*/ |
|
|
|
if (!uip_ipaddr_cmp(pbuf->destipaddr, dev->d_ipaddr) && |
|
pbuf->destipaddr[0] != 0xff02) |
|
{ |
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
#endif |
|
goto drop; |
|
} |
|
#endif /* CONFIG_NET_IPv6 */ |
|
} |
|
|
|
#ifndef CONFIG_NET_IPv6 |
|
if (uip_ipchksum(dev) != 0xffff) |
|
{ |
|
/* Compute and check the IP header checksum. */ |
|
|
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
uip_stat.ip.chkerr++; |
|
#endif |
|
nlldbg("Bad IP checksum\n"); |
|
goto drop; |
|
} |
|
#endif /* CONFIG_NET_IPv6 */ |
|
|
|
/* Everything looks good so far. Now process the incoming packet |
|
* according to the protocol. |
|
*/ |
|
|
|
switch (pbuf->proto) |
|
{ |
|
#ifdef CONFIG_NET_TCP |
|
case UIP_PROTO_TCP: /* TCP input */ |
|
uip_tcpinput(dev); |
|
break; |
|
#endif |
|
|
|
#ifdef CONFIG_NET_UDP |
|
case UIP_PROTO_UDP: /* UDP input */ |
|
uip_udpinput(dev); |
|
break; |
|
#endif |
|
|
|
/* Check for ICMP input */ |
|
|
|
#ifdef CONFIG_NET_ICMP |
|
#ifndef CONFIG_NET_IPv6 |
|
case UIP_PROTO_ICMP: /* ICMP input */ |
|
#else |
|
case UIP_PROTO_ICMP6: /* ICMP6 input */ |
|
#endif |
|
uip_icmpinput(dev); |
|
break; |
|
#endif |
|
|
|
/* Check for ICMP input */ |
|
|
|
#ifdef CONFIG_NET_IGMP |
|
#ifndef CONFIG_NET_IPv6 |
|
case UIP_PROTO_IGMP: /* IGMP input */ |
|
uip_igmpinput(dev); |
|
break; |
|
#endif |
|
#endif |
|
|
|
default: /* Unrecognized/unsupported protocol */ |
|
#ifdef CONFIG_NET_STATISTICS |
|
uip_stat.ip.drop++; |
|
uip_stat.ip.protoerr++; |
|
#endif |
|
|
|
nlldbg("Unrecognized IP protocol\n"); |
|
goto drop; |
|
} |
|
|
|
/* Return and let the caller do any actual transmission. */ |
|
|
|
return; |
|
|
|
drop: |
|
dev->d_len = 0; |
|
} |
|
#endif /* CONFIG_NET */
|
|
|