/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* APM_Baro . cpp - barometer driver
*
* This library is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation ; either version 2.1
* of the License , or ( at your option ) any later version .
*/
# include <AP_Math.h>
# include <AP_Common.h>
# include <AP_Baro.h>
# include <AP_HAL.h>
extern const AP_HAL : : HAL & hal ;
// table of user settable parameters
const AP_Param : : GroupInfo AP_Baro : : var_info [ ] PROGMEM = {
// NOTE: Index numbers 0 and 1 were for the old integer
// ground temperature and pressure
// @Param: ABS_PRESS
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
// @Increment: 1
AP_GROUPINFO ( " ABS_PRESS " , 2 , AP_Baro , _ground_pressure , 0 ) ,
// @Param: TEMP
// @DisplayName: ground temperature
// @Description: calibrated ground temperature in degrees Celsius
// @Increment: 1
AP_GROUPINFO ( " TEMP " , 3 , AP_Baro , _ground_temperature , 0 ) ,
// @Param: ALT_OFFSET
// @DisplayName: altitude offset
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.
// @Units: meters
// @Range: -128 127
// @Increment: 1
AP_GROUPINFO ( " ALT_OFFSET " , 4 , AP_Baro , _alt_offset , 0 ) ,
AP_GROUPEND
} ;
// calibrate the barometer. This must be called at least once before
// the altitude() or climb_rate() interfaces can be used
void AP_Baro : : calibrate ( )
{
float ground_pressure = 0 ;
float ground_temperature = 0 ;
// reset the altitude offset when we calibrate. The altitude
// offset is supposed to be for within a flight
_alt_offset . set_and_save ( 0 ) ;
{
uint32_t tstart = hal . scheduler - > millis ( ) ;
while ( ground_pressure = = 0 | | ! healthy ) {
read ( ) ; // Get initial data from absolute pressure sensor
if ( hal . scheduler - > millis ( ) - tstart > 500 ) {
hal . scheduler - > panic ( PSTR ( " PANIC: AP_Baro::read unsuccessful "
" for more than 500ms in AP_Baro::calibrate [1] \r \n " ) ) ;
}
ground_pressure = get_pressure ( ) ;
ground_temperature = get_temperature ( ) ;
hal . scheduler - > delay ( 20 ) ;
}
}
// let the barometer settle for a full second after startup
// the MS5611 reads quite a long way off for the first second,
// leading to about 1m of error if we don't wait
for ( uint8_t i = 0 ; i < 10 ; i + + ) {
uint32_t tstart = hal . scheduler - > millis ( ) ;
do {
read ( ) ;
if ( hal . scheduler - > millis ( ) - tstart > 500 ) {
hal . scheduler - > panic ( PSTR ( " PANIC: AP_Baro::read unsuccessful "
" for more than 500ms in AP_Baro::calibrate [2] \r \n " ) ) ;
}
} while ( ! healthy ) ;
ground_pressure = get_pressure ( ) ;
ground_temperature = get_temperature ( ) ;
hal . scheduler - > delay ( 100 ) ;
}
// now average over 5 values for the ground pressure and
// temperature settings
for ( uint16_t i = 0 ; i < 5 ; i + + ) {
uint32_t tstart = hal . scheduler - > millis ( ) ;
do {
read ( ) ;
if ( hal . scheduler - > millis ( ) - tstart > 500 ) {
hal . scheduler - > panic ( PSTR ( " PANIC: AP_Baro::read unsuccessful "
" for more than 500ms in AP_Baro::calibrate [3] \r \n " ) ) ;
}
} while ( ! healthy ) ;
ground_pressure = ( ground_pressure * 0.8f ) + ( get_pressure ( ) * 0.2f ) ;
ground_temperature = ( ground_temperature * 0.8f ) +
( get_temperature ( ) * 0.2f ) ;
hal . scheduler - > delay ( 100 ) ;
}
_ground_pressure . set_and_save ( ground_pressure ) ;
_ground_temperature . set_and_save ( ground_temperature / 10.0f ) ;
}
// return current altitude estimate relative to time that calibrate()
// was called. Returns altitude in meters
// note that this relies on read() being called regularly to get new data
float AP_Baro : : get_altitude ( void )
{
float scaling , temp ;
if ( _last_altitude_t = = _last_update ) {
// no new information
return _altitude + _alt_offset ;
}
# if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// on AVR use a less exact, but faster, calculation
scaling = ( float ) _ground_pressure / ( float ) get_pressure ( ) ;
temp = ( ( float ) _ground_temperature ) + 273.15f ;
_altitude = logf ( scaling ) * temp * 29.271267f ;
# else
// on faster CPUs use a more exact calculation
scaling = ( float ) get_pressure ( ) / ( float ) _ground_pressure ;
temp = ( ( float ) _ground_temperature ) + 273.15f ;
// This is an exact calculation that is within +-2.5m of the standard atmosphere tables
// in the troposphere (up to 11,000 m amsl).
_altitude = 153.8462f * temp * ( 1.0f - expf ( 0.190259f * logf ( scaling ) ) ) ;
# endif
_last_altitude_t = _last_update ;
// ensure the climb rate filter is updated
_climb_rate_filter . update ( _altitude , _last_update ) ;
return _altitude + _alt_offset ;
}
// return current scale factor that converts from equivalent to true airspeed
// valid for altitudes up to 10km AMSL
// assumes standard atmosphere lapse rate
float AP_Baro : : get_EAS2TAS ( void )
{
if ( ( abs ( _altitude - _last_altitude_EAS2TAS ) < 100.0f ) & & ( _EAS2TAS ! = 0.0f ) ) {
// not enough change to require re-calculating
return _EAS2TAS ;
}
float tempK = ( ( float ) _ground_temperature ) + 273.15f - 0.0065f * _altitude ;
_EAS2TAS = safe_sqrt ( 1.225f / ( ( float ) get_pressure ( ) / ( 287.26f * tempK ) ) ) ;
_last_altitude_EAS2TAS = _altitude ;
return _EAS2TAS ;
}
// return current climb_rate estimeate relative to time that calibrate()
// was called. Returns climb rate in meters/s, positive means up
// note that this relies on read() being called regularly to get new data
float AP_Baro : : get_climb_rate ( void )
{
// we use a 7 point derivative filter on the climb rate. This seems
// to produce somewhat reasonable results on real hardware
return _climb_rate_filter . slope ( ) * 1.0e3 f ;
}