# include "AC_AttitudeControl_Heli.h"
# include <AP_HAL/AP_HAL.h>
// table of user settable parameters
const AP_Param : : GroupInfo AC_AttitudeControl_Heli : : var_info [ ] = {
// parameters from parent vehicle
AP_NESTEDGROUPINFO ( AC_AttitudeControl , 0 ) ,
// @Param: PIRO_COMP
// @DisplayName: Piro Comp Enable
// @Description: Pirouette compensation enabled
// @Values: 0:Disabled 1:Enabled
// @User: Advanced
AP_GROUPINFO ( " PIRO_COMP " , 0 , AC_AttitudeControl_Heli , _piro_comp_enabled , 0 ) ,
// @Param: HOVR_ROL_TRM
// @DisplayName: Hover Roll Trim
// @Description: Trim the hover roll angle to counter tail rotor thrust in a hover
// @Units: Centi-Degrees
// @Range: 0 1000
// @User: Advanced
AP_GROUPINFO ( " HOVR_ROL_TRM " , 1 , AC_AttitudeControl_Heli , _hover_roll_trim , AC_ATTITUDE_HELI_HOVER_ROLL_TRIM_DEFAULT ) ,
// @Param: RAT_RLL_P
// @DisplayName: Roll axis rate controller P gain
// @Description: Roll axis rate controller P gain. Converts the difference between desired roll rate and actual roll rate into a motor speed output
// @Range: 0.08 0.35
// @Increment: 0.005
// @User: Standard
// @Param: RAT_RLL_I
// @DisplayName: Roll axis rate controller I gain
// @Description: Roll axis rate controller I gain. Corrects long-term difference in desired roll rate vs actual roll rate
// @Range: 0.01 0.6
// @Increment: 0.01
// @User: Standard
// @Param: RAT_RLL_IMAX
// @DisplayName: Roll axis rate controller I gain maximum
// @Description: Roll axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_RLL_D
// @DisplayName: Roll axis rate controller D gain
// @Description: Roll axis rate controller D gain. Compensates for short-term change in desired roll rate vs actual roll rate
// @Range: 0.001 0.03
// @Increment: 0.001
// @User: Standard
// @Param: RAT_RLL_FF
// @DisplayName: Roll axis rate controller feed forward
// @Description: Roll axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_RLL_FILT
// @DisplayName: Roll axis rate controller input frequency in Hz
// @Description: Roll axis rate controller input frequency in Hz
// @Units: Hz
// @Range: 1 20
// @Increment: 1
AP_SUBGROUPINFO ( _pid_rate_roll , " RAT_RLL_ " , 2 , AC_AttitudeControl_Heli , AC_HELI_PID ) ,
// @Param: RAT_PIT_P
// @DisplayName: Pitch axis rate controller P gain
// @Description: Pitch axis rate controller P gain. Converts the difference between desired pitch rate and actual pitch rate into a motor speed output
// @Range: 0.08 0.35
// @Increment: 0.005
// @User: Standard
// @Param: RAT_PIT_I
// @DisplayName: Pitch axis rate controller I gain
// @Description: Pitch axis rate controller I gain. Corrects long-term difference in desired pitch rate vs actual pitch rate
// @Range: 0.01 0.6
// @Increment: 0.01
// @User: Standard
// @Param: RAT_PIT_IMAX
// @DisplayName: Pitch axis rate controller I gain maximum
// @Description: Pitch axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_PIT_D
// @DisplayName: Pitch axis rate controller D gain
// @Description: Pitch axis rate controller D gain. Compensates for short-term change in desired pitch rate vs actual pitch rate
// @Range: 0.001 0.03
// @Increment: 0.001
// @User: Standard
// @Param: RAT_PIT_FF
// @DisplayName: Pitch axis rate controller feed forward
// @Description: Pitch axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_PIT_FILT
// @DisplayName: Pitch axis rate controller input frequency in Hz
// @Description: Pitch axis rate controller input frequency in Hz
// @Units: Hz
// @Range: 1 20
// @Increment: 1
AP_SUBGROUPINFO ( _pid_rate_pitch , " RAT_PIT_ " , 3 , AC_AttitudeControl_Heli , AC_HELI_PID ) ,
// @Param: RAT_YAW_P
// @DisplayName: Yaw axis rate controller P gain
// @Description: Yaw axis rate controller P gain. Converts the difference between desired yaw rate and actual yaw rate into a motor speed output
// @Range: 0.180 0.60
// @Increment: 0.005
// @User: Standard
// @Param: RAT_YAW_I
// @DisplayName: Yaw axis rate controller I gain
// @Description: Yaw axis rate controller I gain. Corrects long-term difference in desired yaw rate vs actual yaw rate
// @Range: 0.01 0.06
// @Increment: 0.01
// @User: Standard
// @Param: RAT_YAW_IMAX
// @DisplayName: Yaw axis rate controller I gain maximum
// @Description: Yaw axis rate controller I gain maximum. Constrains the maximum motor output that the I gain will output
// @Range: 0 1
// @Increment: 0.01
// @User: Standard
// @Param: RAT_YAW_D
// @DisplayName: Yaw axis rate controller D gain
// @Description: Yaw axis rate controller D gain. Compensates for short-term change in desired yaw rate vs actual yaw rate
// @Range: 0.000 0.02
// @Increment: 0.001
// @User: Standard
// @Param: RAT_YAW_FF
// @DisplayName: Yaw axis rate controller feed forward
// @Description: Yaw axis rate controller feed forward
// @Range: 0 0.5
// @Increment: 0.001
// @User: Standard
// @Param: RAT_YAW_FILT
// @DisplayName: Yaw axis rate controller input frequency in Hz
// @Description: Yaw axis rate controller input frequency in Hz
// @Units: Hz
// @Range: 1 20
// @Increment: 1
AP_SUBGROUPINFO ( _pid_rate_yaw , " RAT_YAW_ " , 4 , AC_AttitudeControl_Heli , AC_HELI_PID ) ,
AP_GROUPEND
} ;
// passthrough_bf_roll_pitch_rate_yaw - passthrough the pilots roll and pitch inputs directly to swashplate for flybar acro mode
void AC_AttitudeControl_Heli : : passthrough_bf_roll_pitch_rate_yaw ( float roll_passthrough , float pitch_passthrough , float yaw_rate_bf_cds )
{
// convert from centidegrees on public interface to radians
float yaw_rate_bf_rads = radians ( yaw_rate_bf_cds * 0.01f ) ;
// store roll, pitch and passthroughs
// NOTE: this abuses yaw_rate_bf_rads
_passthrough_roll = roll_passthrough ;
_passthrough_pitch = pitch_passthrough ;
_passthrough_yaw = degrees ( yaw_rate_bf_rads ) * 100.0f ;
// set rate controller to use pass through
_flags_heli . flybar_passthrough = true ;
// set bf rate targets to current body frame rates (i.e. relax and be ready for vehicle to switch out of acro)
_attitude_target_ang_vel . x = _ahrs . get_gyro ( ) . x ;
_attitude_target_ang_vel . y = _ahrs . get_gyro ( ) . y ;
// accel limit desired yaw rate
if ( get_accel_yaw_max_radss ( ) > 0.0f ) {
float rate_change_limit_rads = get_accel_yaw_max_radss ( ) * _dt ;
float rate_change_rads = yaw_rate_bf_rads - _attitude_target_ang_vel . z ;
rate_change_rads = constrain_float ( rate_change_rads , - rate_change_limit_rads , rate_change_limit_rads ) ;
_attitude_target_ang_vel . z + = rate_change_rads ;
} else {
_attitude_target_ang_vel . z = yaw_rate_bf_rads ;
}
integrate_bf_rate_error_to_angle_errors ( ) ;
_att_error_rot_vec_rad . x = 0 ;
_att_error_rot_vec_rad . y = 0 ;
// update our earth-frame angle targets
Vector3f att_error_euler_rad ;
// convert angle error rotation vector into 321-intrinsic euler angle difference
// NOTE: this results an an approximation linearized about the vehicle's attitude
if ( ang_vel_to_euler_rate ( Vector3f ( _ahrs . roll , _ahrs . pitch , _ahrs . yaw ) , _att_error_rot_vec_rad , att_error_euler_rad ) ) {
_attitude_target_euler_angle . x = wrap_PI ( att_error_euler_rad . x + _ahrs . roll ) ;
_attitude_target_euler_angle . y = wrap_PI ( att_error_euler_rad . y + _ahrs . pitch ) ;
_attitude_target_euler_angle . z = wrap_2PI ( att_error_euler_rad . z + _ahrs . yaw ) ;
}
// handle flipping over pitch axis
if ( _attitude_target_euler_angle . y > M_PI / 2.0f ) {
_attitude_target_euler_angle . x = wrap_PI ( _attitude_target_euler_angle . x + M_PI ) ;
_attitude_target_euler_angle . y = wrap_PI ( M_PI - _attitude_target_euler_angle . x ) ;
_attitude_target_euler_angle . z = wrap_2PI ( _attitude_target_euler_angle . z + M_PI ) ;
}
if ( _attitude_target_euler_angle . y < - M_PI / 2.0f ) {
_attitude_target_euler_angle . x = wrap_PI ( _attitude_target_euler_angle . x + M_PI ) ;
_attitude_target_euler_angle . y = wrap_PI ( - M_PI - _attitude_target_euler_angle . x ) ;
_attitude_target_euler_angle . z = wrap_2PI ( _attitude_target_euler_angle . z + M_PI ) ;
}
// convert body-frame angle errors to body-frame rate targets
_rate_target_ang_vel = update_ang_vel_target_from_att_error ( _att_error_rot_vec_rad ) ;
// set body-frame roll/pitch rate target to current desired rates which are the vehicle's actual rates
_rate_target_ang_vel . x = _attitude_target_ang_vel . x ;
_rate_target_ang_vel . y = _attitude_target_ang_vel . y ;
// add desired target to yaw
_rate_target_ang_vel . z + = _attitude_target_ang_vel . z ;
_thrust_error_angle = norm ( _att_error_rot_vec_rad . x , _att_error_rot_vec_rad . y ) ;
}
void AC_AttitudeControl_Heli : : integrate_bf_rate_error_to_angle_errors ( )
{
// Integrate the angular velocity error into the attitude error
_att_error_rot_vec_rad + = ( _attitude_target_ang_vel - _ahrs . get_gyro ( ) ) * _dt ;
// Constrain attitude error
_att_error_rot_vec_rad . x = constrain_float ( _att_error_rot_vec_rad . x , - AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD , AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD ) ;
_att_error_rot_vec_rad . y = constrain_float ( _att_error_rot_vec_rad . y , - AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD , AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD ) ;
_att_error_rot_vec_rad . z = constrain_float ( _att_error_rot_vec_rad . z , - AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD , AC_ATTITUDE_HELI_ACRO_OVERSHOOT_ANGLE_RAD ) ;
}
// subclass non-passthrough too, for external gyro, no flybar
void AC_AttitudeControl_Heli : : input_rate_bf_roll_pitch_yaw ( float roll_rate_bf_cds , float pitch_rate_bf_cds , float yaw_rate_bf_cds )
{
_passthrough_yaw = yaw_rate_bf_cds ;
AC_AttitudeControl : : input_rate_bf_roll_pitch_yaw ( roll_rate_bf_cds , pitch_rate_bf_cds , yaw_rate_bf_cds ) ;
}
//
// rate controller (body-frame) methods
//
// rate_controller_run - run lowest level rate controller and send outputs to the motors
// should be called at 100hz or more
void AC_AttitudeControl_Heli : : rate_controller_run ( )
{
Vector3f gyro_latest = _ahrs . get_gyro_latest ( ) ;
// call rate controllers and send output to motors object
// if using a flybar passthrough roll and pitch directly to motors
if ( _flags_heli . flybar_passthrough ) {
_motors . set_roll ( _passthrough_roll / 4500.0f ) ;
_motors . set_pitch ( _passthrough_pitch / 4500.0f ) ;
} else {
rate_bf_to_motor_roll_pitch ( gyro_latest , _rate_target_ang_vel . x , _rate_target_ang_vel . y ) ;
}
if ( _flags_heli . tail_passthrough ) {
_motors . set_yaw ( _passthrough_yaw / 4500.0f ) ;
} else {
_motors . set_yaw ( rate_target_to_motor_yaw ( gyro_latest . z , _rate_target_ang_vel . z ) ) ;
}
}
// Update Alt_Hold angle maximum
void AC_AttitudeControl_Heli : : update_althold_lean_angle_max ( float throttle_in )
{
float althold_lean_angle_max = acos ( constrain_float ( _throttle_in / AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX , 0.0f , 1.0f ) ) ;
_althold_lean_angle_max = _althold_lean_angle_max + ( _dt / ( _dt + _angle_limit_tc ) ) * ( althold_lean_angle_max - _althold_lean_angle_max ) ;
}
//
// private methods
//
//
// body-frame rate controller
//
// rate_bf_to_motor_roll_pitch - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
void AC_AttitudeControl_Heli : : rate_bf_to_motor_roll_pitch ( const Vector3f & rate_rads , float rate_roll_target_rads , float rate_pitch_target_rads )
{
float roll_pd , roll_i , roll_ff ; // used to capture pid values
float pitch_pd , pitch_i , pitch_ff ; // used to capture pid values
float rate_roll_error_rads , rate_pitch_error_rads ; // simply target_rate - current_rate
float roll_out , pitch_out ;
// calculate error
rate_roll_error_rads = rate_roll_target_rads - rate_rads . x ;
rate_pitch_error_rads = rate_pitch_target_rads - rate_rads . y ;
// pass error to PID controller
_pid_rate_roll . set_input_filter_all ( rate_roll_error_rads ) ;
_pid_rate_roll . set_desired_rate ( rate_roll_target_rads ) ;
_pid_rate_pitch . set_input_filter_all ( rate_pitch_error_rads ) ;
_pid_rate_pitch . set_desired_rate ( rate_pitch_target_rads ) ;
// call p and d controllers
roll_pd = _pid_rate_roll . get_p ( ) + _pid_rate_roll . get_d ( ) ;
pitch_pd = _pid_rate_pitch . get_p ( ) + _pid_rate_pitch . get_d ( ) ;
// get roll i term
roll_i = _pid_rate_roll . get_integrator ( ) ;
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if ( ! _flags_heli . limit_roll | | ( ( roll_i > 0 & & rate_roll_error_rads < 0 ) | | ( roll_i < 0 & & rate_roll_error_rads > 0 ) ) ) {
if ( _flags_heli . leaky_i ) {
roll_i = _pid_rate_roll . get_leaky_i ( AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE ) ;
} else {
roll_i = _pid_rate_roll . get_i ( ) ;
}
}
// get pitch i term
pitch_i = _pid_rate_pitch . get_integrator ( ) ;
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if ( ! _flags_heli . limit_pitch | | ( ( pitch_i > 0 & & rate_pitch_error_rads < 0 ) | | ( pitch_i < 0 & & rate_pitch_error_rads > 0 ) ) ) {
if ( _flags_heli . leaky_i ) {
pitch_i = _pid_rate_pitch . get_leaky_i ( AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE ) ;
} else {
pitch_i = _pid_rate_pitch . get_i ( ) ;
}
}
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward
roll_ff = roll_feedforward_filter . apply ( _pid_rate_roll . get_ff ( rate_roll_target_rads ) , _dt ) ;
pitch_ff = pitch_feedforward_filter . apply ( _pid_rate_pitch . get_ff ( rate_pitch_target_rads ) , _dt ) ;
// add feed forward and final output
roll_out = roll_pd + roll_i + roll_ff ;
pitch_out = pitch_pd + pitch_i + pitch_ff ;
// constrain output and update limit flags
if ( fabsf ( roll_out ) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX ) {
roll_out = constrain_float ( roll_out , - AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX , AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX ) ;
_flags_heli . limit_roll = true ;
} else {
_flags_heli . limit_roll = false ;
}
if ( fabsf ( pitch_out ) > AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX ) {
pitch_out = constrain_float ( pitch_out , - AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX , AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX ) ;
_flags_heli . limit_pitch = true ;
} else {
_flags_heli . limit_pitch = false ;
}
// output to motors
_motors . set_roll ( roll_out ) ;
_motors . set_pitch ( pitch_out ) ;
// Piro-Comp, or Pirouette Compensation is a pre-compensation calculation, which basically rotates the Roll and Pitch Rate I-terms as the
// helicopter rotates in yaw. Much of the built-up I-term is needed to tip the disk into the incoming wind. Fast yawing can create an instability
// as the built-up I-term in one axis must be reduced, while the other increases. This helps solve that by rotating the I-terms before the error occurs.
// It does assume that the rotor aerodynamics and mechanics are essentially symmetrical about the main shaft, which is a generally valid assumption.
if ( _piro_comp_enabled ) {
int32_t piro_roll_i , piro_pitch_i ; // used to hold I-terms while doing piro comp
piro_roll_i = roll_i ;
piro_pitch_i = pitch_i ;
Vector2f yawratevector ;
yawratevector . x = cosf ( - rate_rads . z * _dt ) ;
yawratevector . y = sinf ( - rate_rads . z * _dt ) ;
yawratevector . normalize ( ) ;
roll_i = piro_roll_i * yawratevector . x - piro_pitch_i * yawratevector . y ;
pitch_i = piro_pitch_i * yawratevector . x + piro_roll_i * yawratevector . y ;
_pid_rate_pitch . set_integrator ( pitch_i ) ;
_pid_rate_roll . set_integrator ( roll_i ) ;
}
}
// rate_bf_to_motor_yaw - ask the rate controller to calculate the motor outputs to achieve the target rate in radians/second
float AC_AttitudeControl_Heli : : rate_target_to_motor_yaw ( float rate_yaw_actual_rads , float rate_target_rads )
{
float pd , i , vff ; // used to capture pid values for logging
float rate_error_rads ; // simply target_rate - current_rate
float yaw_out ;
// calculate error and call pid controller
rate_error_rads = rate_target_rads - rate_yaw_actual_rads ;
// pass error to PID controller
_pid_rate_yaw . set_input_filter_all ( rate_error_rads ) ;
_pid_rate_yaw . set_desired_rate ( rate_target_rads ) ;
// get p and d
pd = _pid_rate_yaw . get_p ( ) + _pid_rate_yaw . get_d ( ) ;
// get i term
i = _pid_rate_yaw . get_integrator ( ) ;
// update i term as long as we haven't breached the limits or the I term will certainly reduce
if ( ! _flags_heli . limit_yaw | | ( ( i > 0 & & rate_error_rads < 0 ) | | ( i < 0 & & rate_error_rads > 0 ) ) ) {
if ( ( ( AP_MotorsHeli & ) _motors ) . rotor_runup_complete ( ) ) {
i = _pid_rate_yaw . get_i ( ) ;
} else {
i = ( ( AC_HELI_PID & ) _pid_rate_yaw ) . get_leaky_i ( AC_ATTITUDE_HELI_RATE_INTEGRATOR_LEAK_RATE ) ; // If motor is not running use leaky I-term to avoid excessive build-up
}
}
// For legacy reasons, we convert to centi-degrees before inputting to the feedforward
vff = yaw_velocity_feedforward_filter . apply ( _pid_rate_yaw . get_ff ( rate_target_rads ) , _dt ) ;
// add feed forward
yaw_out = pd + i + vff ;
// constrain output and update limit flag
if ( fabsf ( yaw_out ) > AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX ) {
yaw_out = constrain_float ( yaw_out , - AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX , AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX ) ;
_flags_heli . limit_yaw = true ;
} else {
_flags_heli . limit_yaw = false ;
}
// output to motors
return yaw_out ;
}
//
// throttle functions
//
void AC_AttitudeControl_Heli : : set_throttle_out ( float throttle_in , bool apply_angle_boost , float filter_cutoff )
{
_throttle_in = throttle_in ;
update_althold_lean_angle_max ( throttle_in ) ;
_motors . set_throttle_filter_cutoff ( filter_cutoff ) ;
_motors . set_throttle ( throttle_in ) ;
// Clear angle_boost for logging purposes
_angle_boost = 0.0f ;
}