# include "Rover.h"
# include <AP_RangeFinder/RangeFinder_Backend.h>
# include <AP_VisualOdom/AP_VisualOdom.h>
// initialise compass
void Rover : : init_compass ( )
{
if ( ! g . compass_enabled ) {
return ;
}
compass . init ( ) ;
if ( ! compass . read ( ) ) {
hal . console - > printf ( " Compass initialisation failed! \n " ) ;
g . compass_enabled = false ;
} else {
ahrs . set_compass ( & compass ) ;
}
}
/*
initialise compass ' s location used for declination
*/
void Rover : : init_compass_location ( void )
{
// update initial location used for declination
if ( ! compass_init_location ) {
Location loc ;
if ( ahrs . get_position ( loc ) ) {
compass . set_initial_location ( loc . lat , loc . lng ) ;
compass_init_location = true ;
}
}
}
// check for new compass data - 10Hz
void Rover : : update_compass ( void )
{
if ( g . compass_enabled & & compass . read ( ) ) {
ahrs . set_compass ( & compass ) ;
// update offsets
if ( should_log ( MASK_LOG_COMPASS ) ) {
logger . Write_Compass ( ) ;
}
}
}
// Calibrate compass
void Rover : : compass_cal_update ( ) {
if ( ! hal . util - > get_soft_armed ( ) ) {
compass . compass_cal_update ( ) ;
}
}
// Save compass offsets
void Rover : : compass_save ( ) {
if ( g . compass_enabled & &
compass . get_learn_type ( ) > = Compass : : LEARN_INTERNAL & &
! arming . is_armed ( ) ) {
compass . save_offsets ( ) ;
}
}
// init beacons used for non-gps position estimates
void Rover : : init_beacon ( )
{
g2 . beacon . init ( ) ;
}
// init visual odometry sensor
void Rover : : init_visual_odom ( )
{
g2 . visual_odom . init ( ) ;
}
// update wheel encoders
void Rover : : update_wheel_encoder ( )
{
// exit immediately if not enabled
if ( g2 . wheel_encoder . num_sensors ( ) = = 0 ) {
return ;
}
// update encoders
g2 . wheel_encoder . update ( ) ;
// initialise on first iteration
const uint32_t now = AP_HAL : : millis ( ) ;
if ( wheel_encoder_last_ekf_update_ms = = 0 ) {
wheel_encoder_last_ekf_update_ms = now ;
for ( uint8_t i = 0 ; i < g2 . wheel_encoder . num_sensors ( ) ; i + + ) {
wheel_encoder_last_angle_rad [ i ] = g2 . wheel_encoder . get_delta_angle ( i ) ;
wheel_encoder_last_update_ms [ i ] = g2 . wheel_encoder . get_last_reading_ms ( i ) ;
}
return ;
}
// calculate delta angle and delta time and send to EKF
// use time of last ping from wheel encoder
// send delta time (time between this wheel encoder time and previous wheel encoder time)
// in case where wheel hasn't moved, count = 0 (cap the delta time at 50ms - or system time)
// use system clock of last update instead of time of last ping
const float system_dt = ( now - wheel_encoder_last_ekf_update_ms ) / 1000.0f ;
for ( uint8_t i = 0 ; i < g2 . wheel_encoder . num_sensors ( ) ; i + + ) {
// calculate angular change (in radians)
const float curr_angle_rad = g2 . wheel_encoder . get_delta_angle ( i ) ;
const float delta_angle = curr_angle_rad - wheel_encoder_last_angle_rad [ i ] ;
wheel_encoder_last_angle_rad [ i ] = curr_angle_rad ;
// save cumulative distances at current time (in meters)
wheel_encoder_last_distance_m [ i ] = g2 . wheel_encoder . get_distance ( i ) ;
// calculate delta time
float delta_time ;
const uint32_t latest_sensor_update_ms = g2 . wheel_encoder . get_last_reading_ms ( i ) ;
const uint32_t sensor_diff_ms = latest_sensor_update_ms - wheel_encoder_last_update_ms [ i ] ;
// if we have not received any sensor updates, or time difference is too high then use time since last update to the ekf
// check for old or insane sensor update times
if ( sensor_diff_ms = = 0 | | sensor_diff_ms > 100 ) {
delta_time = system_dt ;
wheel_encoder_last_update_ms [ i ] = wheel_encoder_last_ekf_update_ms ;
} else {
delta_time = sensor_diff_ms / 1000.0f ;
wheel_encoder_last_update_ms [ i ] = latest_sensor_update_ms ;
}
/* delAng is the measured change in angular position from the previous measurement where a positive rotation is produced by forward motion of the vehicle (rad)
* delTime is the time interval for the measurement of delAng ( sec )
* timeStamp_ms is the time when the rotation was last measured ( msec )
* posOffset is the XYZ body frame position of the wheel hub ( m )
*/
EKF3 . writeWheelOdom ( delta_angle , delta_time , wheel_encoder_last_update_ms [ i ] , g2 . wheel_encoder . get_pos_offset ( i ) , g2 . wheel_encoder . get_wheel_radius ( i ) ) ;
}
// record system time update for next iteration
wheel_encoder_last_ekf_update_ms = now ;
}
// Accel calibration
void Rover : : accel_cal_update ( ) {
if ( hal . util - > get_soft_armed ( ) ) {
return ;
}
ins . acal_update ( ) ;
// check if new trim values, and set them float trim_roll, trim_pitch;
float trim_roll , trim_pitch ;
if ( ins . get_new_trim ( trim_roll , trim_pitch ) ) {
ahrs . set_trim ( Vector3f ( trim_roll , trim_pitch , 0 ) ) ;
}
}
// read the rangefinders
void Rover : : read_rangefinders ( void )
{
rangefinder . update ( ) ;
AP_RangeFinder_Backend * s0 = rangefinder . get_backend ( 0 ) ;
AP_RangeFinder_Backend * s1 = rangefinder . get_backend ( 1 ) ;
if ( s0 = = nullptr | | s0 - > status ( ) = = RangeFinder : : RangeFinder_NotConnected ) {
// this makes it possible to disable rangefinder at runtime
return ;
}
if ( s1 ! = nullptr & & s1 - > has_data ( ) ) {
// we have two rangefinders
obstacle . rangefinder1_distance_cm = s0 - > distance_cm ( ) ;
obstacle . rangefinder2_distance_cm = s1 - > distance_cm ( ) ;
if ( obstacle . rangefinder1_distance_cm < static_cast < uint16_t > ( g . rangefinder_trigger_cm ) & &
obstacle . rangefinder1_distance_cm < static_cast < uint16_t > ( obstacle . rangefinder2_distance_cm ) ) {
// we have an object on the left
if ( obstacle . detected_count < 127 ) {
obstacle . detected_count + + ;
}
if ( obstacle . detected_count = = g . rangefinder_debounce ) {
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Rangefinder1 obstacle %u cm " ,
static_cast < uint32_t > ( obstacle . rangefinder1_distance_cm ) ) ;
}
obstacle . detected_time_ms = AP_HAL : : millis ( ) ;
obstacle . turn_angle = g . rangefinder_turn_angle ;
} else if ( obstacle . rangefinder2_distance_cm < static_cast < uint16_t > ( g . rangefinder_trigger_cm ) ) {
// we have an object on the right
if ( obstacle . detected_count < 127 ) {
obstacle . detected_count + + ;
}
if ( obstacle . detected_count = = g . rangefinder_debounce ) {
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Rangefinder2 obstacle %u cm " ,
static_cast < uint32_t > ( obstacle . rangefinder2_distance_cm ) ) ;
}
obstacle . detected_time_ms = AP_HAL : : millis ( ) ;
obstacle . turn_angle = - g . rangefinder_turn_angle ;
}
} else {
// we have a single rangefinder
obstacle . rangefinder1_distance_cm = s0 - > distance_cm ( ) ;
obstacle . rangefinder2_distance_cm = 0 ;
if ( obstacle . rangefinder1_distance_cm < static_cast < uint16_t > ( g . rangefinder_trigger_cm ) ) {
// obstacle detected in front
if ( obstacle . detected_count < 127 ) {
obstacle . detected_count + + ;
}
if ( obstacle . detected_count = = g . rangefinder_debounce ) {
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Rangefinder obstacle %u cm " ,
static_cast < uint32_t > ( obstacle . rangefinder1_distance_cm ) ) ;
}
obstacle . detected_time_ms = AP_HAL : : millis ( ) ;
obstacle . turn_angle = g . rangefinder_turn_angle ;
}
}
Log_Write_Rangefinder ( ) ;
Log_Write_Depth ( ) ;
// no object detected - reset after the turn time
if ( obstacle . detected_count > = g . rangefinder_debounce & &
AP_HAL : : millis ( ) > obstacle . detected_time_ms + g . rangefinder_turn_time * 1000 ) {
gcs ( ) . send_text ( MAV_SEVERITY_INFO , " Obstacle passed " ) ;
obstacle . detected_count = 0 ;
obstacle . turn_angle = 0 ;
}
}
// initialise proximity sensor
void Rover : : init_proximity ( void )
{
g2 . proximity . init ( ) ;
g2 . proximity . set_rangefinder ( & rangefinder ) ;
}
/*
ask airspeed sensor for a new value , duplicated from plane
*/
void Rover : : read_airspeed ( void )
{
g2 . airspeed . update ( should_log ( MASK_LOG_IMU ) ) ;
}
/*
update RPM sensors
*/
void Rover : : rpm_update ( void )
{
rpm_sensor . update ( ) ;
if ( rpm_sensor . enabled ( 0 ) | | rpm_sensor . enabled ( 1 ) ) {
if ( should_log ( MASK_LOG_RC ) ) {
logger . Write_RPM ( rpm_sensor ) ;
}
}
}