# pragma once
// Gyro and Accelerometer calibration criteria
# define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
# define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
# define AP_INERTIAL_SENSOR_ACCEL_CLIP_THRESH_MSS (15.5f*GRAVITY_MSS) // accelerometer values over 15.5G are recorded as a clipping error
# define AP_INERTIAL_SENSOR_ACCEL_VIBE_FLOOR_FILT_HZ 5.0f // accel vibration floor filter hz
# define AP_INERTIAL_SENSOR_ACCEL_VIBE_FILT_HZ 2.0f // accel vibration filter hz
# define AP_INERTIAL_SENSOR_ACCEL_PEAK_DETECT_TIMEOUT_MS 500 // peak-hold detector timeout
/**
maximum number of INS instances available on this platform . If more
than 1 then redundant sensors may be available
*/
# define INS_MAX_INSTANCES 3
# define INS_MAX_BACKENDS 6
# define INS_VIBRATION_CHECK_INSTANCES 2
# define DEFAULT_IMU_LOG_BAT_MASK 0
# include <stdint.h>
# include <AP_AccelCal/AP_AccelCal.h>
# include <AP_HAL/AP_HAL.h>
# include <AP_Math/AP_Math.h>
# include <Filter/LowPassFilter2p.h>
# include <Filter/LowPassFilter.h>
# include <Filter/NotchFilter.h>
class AP_InertialSensor_Backend ;
class AuxiliaryBus ;
class AP_AHRS ;
/*
forward declare DataFlash class . We can ' t include DataFlash . h
because of mutual dependencies
*/
class DataFlash_Class ;
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units .
*
* Gauss - Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method : http : //chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http : //rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor : AP_AccelCal_Client
{
friend class AP_InertialSensor_Backend ;
public :
AP_InertialSensor ( ) ;
/* Do not allow copies */
AP_InertialSensor ( const AP_InertialSensor & other ) = delete ;
AP_InertialSensor & operator = ( const AP_InertialSensor & ) = delete ;
static AP_InertialSensor * get_instance ( ) ;
enum Gyro_Calibration_Timing {
GYRO_CAL_NEVER = 0 ,
GYRO_CAL_STARTUP_ONLY = 1
} ;
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// Gyros will be calibrated unless INS_GYRO_CAL is zero
///
/// @param style The initialisation startup style.
///
void init ( uint16_t sample_rate_hz ) ;
/// Register a new gyro/accel driver, allocating an instance
/// number
uint8_t register_gyro ( uint16_t raw_sample_rate_hz , uint32_t id ) ;
uint8_t register_accel ( uint16_t raw_sample_rate_hz , uint32_t id ) ;
// a function called by the main thread at the main loop rate:
void periodic ( ) ;
bool calibrate_trim ( float & trim_roll , float & trim_pitch ) ;
/// calibrating - returns true if the gyros or accels are currently being calibrated
bool calibrating ( ) const { return _calibrating ; }
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
void init_gyro ( void ) ;
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f & get_gyro ( uint8_t i ) const { return _gyro [ i ] ; }
const Vector3f & get_gyro ( void ) const { return get_gyro ( _primary_gyro ) ; }
// set gyro offsets in radians/sec
const Vector3f & get_gyro_offsets ( uint8_t i ) const { return _gyro_offset [ i ] ; }
const Vector3f & get_gyro_offsets ( void ) const { return get_gyro_offsets ( _primary_gyro ) ; }
//get delta angle if available
bool get_delta_angle ( uint8_t i , Vector3f & delta_angle ) const ;
bool get_delta_angle ( Vector3f & delta_angle ) const { return get_delta_angle ( _primary_gyro , delta_angle ) ; }
float get_delta_angle_dt ( uint8_t i ) const ;
float get_delta_angle_dt ( ) const { return get_delta_angle_dt ( _primary_accel ) ; }
//get delta velocity if available
bool get_delta_velocity ( uint8_t i , Vector3f & delta_velocity ) const ;
bool get_delta_velocity ( Vector3f & delta_velocity ) const { return get_delta_velocity ( _primary_accel , delta_velocity ) ; }
float get_delta_velocity_dt ( uint8_t i ) const ;
float get_delta_velocity_dt ( ) const { return get_delta_velocity_dt ( _primary_accel ) ; }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f & get_accel ( uint8_t i ) const { return _accel [ i ] ; }
const Vector3f & get_accel ( void ) const { return get_accel ( _primary_accel ) ; }
uint32_t get_gyro_error_count ( uint8_t i ) const { return _gyro_error_count [ i ] ; }
uint32_t get_accel_error_count ( uint8_t i ) const { return _accel_error_count [ i ] ; }
// multi-device interface
bool get_gyro_health ( uint8_t instance ) const { return ( instance < _gyro_count ) ? _gyro_healthy [ instance ] : false ; }
bool get_gyro_health ( void ) const { return get_gyro_health ( _primary_gyro ) ; }
bool get_gyro_health_all ( void ) const ;
uint8_t get_gyro_count ( void ) const { return _gyro_count ; }
bool gyro_calibrated_ok ( uint8_t instance ) const { return _gyro_cal_ok [ instance ] ; }
bool gyro_calibrated_ok_all ( ) const ;
bool use_gyro ( uint8_t instance ) const ;
Gyro_Calibration_Timing gyro_calibration_timing ( ) { return ( Gyro_Calibration_Timing ) _gyro_cal_timing . get ( ) ; }
bool get_accel_health ( uint8_t instance ) const { return ( instance < _accel_count ) ? _accel_healthy [ instance ] : false ; }
bool get_accel_health ( void ) const { return get_accel_health ( _primary_accel ) ; }
bool get_accel_health_all ( void ) const ;
uint8_t get_accel_count ( void ) const { return _accel_count ; }
bool accel_calibrated_ok_all ( ) const ;
bool use_accel ( uint8_t instance ) const ;
// get observed sensor rates, including any internal sampling multiplier
uint16_t get_gyro_rate_hz ( uint8_t instance ) const { return uint16_t ( _gyro_raw_sample_rates [ instance ] * _gyro_over_sampling [ instance ] ) ; }
uint16_t get_accel_rate_hz ( uint8_t instance ) const { return uint16_t ( _accel_raw_sample_rates [ instance ] * _accel_over_sampling [ instance ] ) ; }
// get accel offsets in m/s/s
const Vector3f & get_accel_offsets ( uint8_t i ) const { return _accel_offset [ i ] ; }
const Vector3f & get_accel_offsets ( void ) const { return get_accel_offsets ( _primary_accel ) ; }
// get accel scale
const Vector3f & get_accel_scale ( uint8_t i ) const { return _accel_scale [ i ] ; }
const Vector3f & get_accel_scale ( void ) const { return get_accel_scale ( _primary_accel ) ; }
// return a 3D vector defining the position offset of the IMU accelerometer in metres relative to the body frame origin
const Vector3f & get_imu_pos_offset ( uint8_t instance ) const {
return _accel_pos [ instance ] ;
}
const Vector3f & get_imu_pos_offset ( void ) const {
return _accel_pos [ _primary_accel ] ;
}
// return the temperature if supported. Zero is returned if no
// temperature is available
float get_temperature ( uint8_t instance ) const { return _temperature [ instance ] ; }
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
float get_delta_time ( ) const { return MIN ( _delta_time , _loop_delta_t_max ) ; }
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
float get_gyro_drift_rate ( void ) const { return ToRad ( 0.5f / 60 ) ; }
// update gyro and accel values from accumulated samples
void update ( void ) ;
// wait for a sample to be available
void wait_for_sample ( void ) ;
// class level parameters
static const struct AP_Param : : GroupInfo var_info [ ] ;
// set overall board orientation
void set_board_orientation ( enum Rotation orientation ) {
_board_orientation = orientation ;
}
// return the selected sample rate
uint16_t get_sample_rate ( void ) const { return _sample_rate ; }
// return the main loop delta_t in seconds
float get_loop_delta_t ( void ) const { return _loop_delta_t ; }
uint16_t error_count ( void ) const { return 0 ; }
bool healthy ( void ) const { return get_gyro_health ( ) & & get_accel_health ( ) ; }
uint8_t get_primary_accel ( void ) const { return _primary_accel ; }
uint8_t get_primary_gyro ( void ) const { return _primary_gyro ; }
// enable HIL mode
void set_hil_mode ( void ) { _hil_mode = true ; }
// get the gyro filter rate in Hz
uint8_t get_gyro_filter_hz ( void ) const { return _gyro_filter_cutoff ; }
// get the accel filter rate in Hz
uint8_t get_accel_filter_hz ( void ) const { return _accel_filter_cutoff ; }
// indicate which bit in LOG_BITMASK indicates raw logging enabled
void set_log_raw_bit ( uint32_t log_raw_bit ) { _log_raw_bit = log_raw_bit ; }
// calculate vibration levels and check for accelerometer clipping (called by a backends)
void calc_vibration_and_clipping ( uint8_t instance , const Vector3f & accel , float dt ) ;
// retrieve latest calculated vibration levels
Vector3f get_vibration_levels ( ) const { return get_vibration_levels ( _primary_accel ) ; }
Vector3f get_vibration_levels ( uint8_t instance ) const ;
// retrieve and clear accelerometer clipping count
uint32_t get_accel_clip_count ( uint8_t instance ) const ;
// check for vibration movement. True when all axis show nearly zero movement
bool is_still ( ) ;
/*
HIL set functions . The minimum for HIL is set_accel ( ) and
set_gyro ( ) . The others are option for higher fidelity log
playback
*/
void set_accel ( uint8_t instance , const Vector3f & accel ) ;
void set_gyro ( uint8_t instance , const Vector3f & gyro ) ;
void set_delta_time ( float delta_time ) ;
void set_delta_velocity ( uint8_t instance , float deltavt , const Vector3f & deltav ) ;
void set_delta_angle ( uint8_t instance , const Vector3f & deltaa , float deltaat ) ;
AuxiliaryBus * get_auxiliary_bus ( int16_t backend_id ) { return get_auxiliary_bus ( backend_id , 0 ) ; }
AuxiliaryBus * get_auxiliary_bus ( int16_t backend_id , uint8_t instance ) ;
void detect_backends ( void ) ;
// accel peak hold detector
void set_accel_peak_hold ( uint8_t instance , const Vector3f & accel ) ;
float get_accel_peak_hold_neg_x ( ) const { return _peak_hold_state . accel_peak_hold_neg_x ; }
//Returns accel calibrator interface object pointer
AP_AccelCal * get_acal ( ) const { return _acal ; }
// Returns body fixed accelerometer level data averaged during accel calibration's first step
bool get_fixed_mount_accel_cal_sample ( uint8_t sample_num , Vector3f & ret ) const ;
// Returns primary accelerometer level data averaged during accel calibration's first step
bool get_primary_accel_cal_sample_avg ( uint8_t sample_num , Vector3f & ret ) const ;
// Returns newly calculated trim values if calculated
bool get_new_trim ( float & trim_roll , float & trim_pitch ) ;
// initialise and register accel calibrator
// called during the startup of accel cal
void acal_init ( ) ;
// update accel calibrator
void acal_update ( ) ;
// simple accel calibration
MAV_RESULT simple_accel_cal ( AP_AHRS & ahrs ) ;
bool accel_cal_requires_reboot ( ) const { return _accel_cal_requires_reboot ; }
// return time in microseconds of last update() call
uint32_t get_last_update_usec ( void ) const { return _last_update_usec ; }
enum IMU_SENSOR_TYPE {
IMU_SENSOR_TYPE_ACCEL = 0 ,
IMU_SENSOR_TYPE_GYRO = 1 ,
} ;
class BatchSampler {
public :
BatchSampler ( const AP_InertialSensor & imu ) :
type ( IMU_SENSOR_TYPE_ACCEL ) ,
_imu ( imu ) {
AP_Param : : setup_object_defaults ( this , var_info ) ;
} ;
void init ( ) ;
void sample ( uint8_t instance , IMU_SENSOR_TYPE _type , uint64_t sample_us , const Vector3f & sample ) ;
// a function called by the main thread at the main loop rate:
void periodic ( ) ;
// class level parameters
static const struct AP_Param : : GroupInfo var_info [ ] ;
// Parameters
AP_Int16 _required_count ;
AP_Int8 _sensor_mask ;
// end Parameters
private :
void rotate_to_next_sensor ( ) ;
bool should_log ( uint8_t instance , IMU_SENSOR_TYPE type ) ;
void push_data_to_log ( ) ;
uint64_t measurement_started_us ;
bool initialised : 1 ;
bool isbh_sent : 1 ;
uint8_t instance : 3 ; // instance we are sending data for
AP_InertialSensor : : IMU_SENSOR_TYPE type : 1 ;
uint16_t isb_seqnum ;
int16_t * data_x ;
int16_t * data_y ;
int16_t * data_z ;
uint16_t data_write_offset ; // units: samples
uint16_t data_read_offset ; // units: samples
uint32_t last_sent_ms ;
// all samples are multiplied by this
static const uint16_t multiplier_accel = INT16_MAX / radians ( 2000 ) ;
static const uint16_t multiplier_gyro = INT16_MAX / ( 16 * GRAVITY_MSS ) ;
uint16_t multiplier = multiplier_accel ;
// push blocks to DataFlash at regular intervals. each
// message is ~ 108 bytes in size, so we use about 1kB/s of
// logging bandwidth with a 100ms interval. If we are taking
// 1024 samples then we need to send 32 packets, so it will
// take ~3 seconds to push a complete batch to the log. If
// you are running a on an FMU with three IMUs then you
// will loop back around to the first sensor after about
// twenty seconds.
const uint8_t push_interval_ms = 100 ;
const uint16_t samples_per_msg = 32 ;
const AP_InertialSensor & _imu ;
} ;
BatchSampler batchsampler { * this } ;
private :
// load backend drivers
bool _add_backend ( AP_InertialSensor_Backend * backend ) ;
void _start_backends ( ) ;
AP_InertialSensor_Backend * _find_backend ( int16_t backend_id , uint8_t instance ) ;
// gyro initialisation
void _init_gyro ( ) ;
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
bool _calculate_trim ( const Vector3f & accel_sample , float & trim_roll , float & trim_pitch ) ;
// save gyro calibration values to eeprom
void _save_gyro_calibration ( ) ;
// backend objects
AP_InertialSensor_Backend * _backends [ INS_MAX_BACKENDS ] ;
// number of gyros and accel drivers. Note that most backends
// provide both accel and gyro data, so will increment both
// counters on initialisation
uint8_t _gyro_count ;
uint8_t _accel_count ;
uint8_t _backend_count ;
// the selected sample rate
uint16_t _sample_rate ;
float _loop_delta_t ;
float _loop_delta_t_max ;
// Most recent accelerometer reading
Vector3f _accel [ INS_MAX_INSTANCES ] ;
Vector3f _delta_velocity [ INS_MAX_INSTANCES ] ;
float _delta_velocity_dt [ INS_MAX_INSTANCES ] ;
bool _delta_velocity_valid [ INS_MAX_INSTANCES ] ;
// delta velocity accumulator
Vector3f _delta_velocity_acc [ INS_MAX_INSTANCES ] ;
// time accumulator for delta velocity accumulator
float _delta_velocity_acc_dt [ INS_MAX_INSTANCES ] ;
// Low Pass filters for gyro and accel
LowPassFilter2pVector3f _accel_filter [ INS_MAX_INSTANCES ] ;
LowPassFilter2pVector3f _gyro_filter [ INS_MAX_INSTANCES ] ;
Vector3f _accel_filtered [ INS_MAX_INSTANCES ] ;
Vector3f _gyro_filtered [ INS_MAX_INSTANCES ] ;
bool _new_accel_data [ INS_MAX_INSTANCES ] ;
bool _new_gyro_data [ INS_MAX_INSTANCES ] ;
// optional notch filter on gyro
NotchFilterVector3fParam _notch_filter ;
// Most recent gyro reading
Vector3f _gyro [ INS_MAX_INSTANCES ] ;
Vector3f _delta_angle [ INS_MAX_INSTANCES ] ;
float _delta_angle_dt [ INS_MAX_INSTANCES ] ;
bool _delta_angle_valid [ INS_MAX_INSTANCES ] ;
// time accumulator for delta angle accumulator
float _delta_angle_acc_dt [ INS_MAX_INSTANCES ] ;
Vector3f _delta_angle_acc [ INS_MAX_INSTANCES ] ;
Vector3f _last_delta_angle [ INS_MAX_INSTANCES ] ;
Vector3f _last_raw_gyro [ INS_MAX_INSTANCES ] ;
// product id
AP_Int16 _old_product_id ;
// IDs to uniquely identify each sensor: shall remain
// the same across reboots
AP_Int32 _accel_id [ INS_MAX_INSTANCES ] ;
AP_Int32 _gyro_id [ INS_MAX_INSTANCES ] ;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale [ INS_MAX_INSTANCES ] ;
AP_Vector3f _accel_offset [ INS_MAX_INSTANCES ] ;
AP_Vector3f _gyro_offset [ INS_MAX_INSTANCES ] ;
// accelerometer position offset in body frame
AP_Vector3f _accel_pos [ INS_MAX_INSTANCES ] ;
// accelerometer max absolute offsets to be used for calibration
float _accel_max_abs_offsets [ INS_MAX_INSTANCES ] ;
// accelerometer and gyro raw sample rate in units of Hz
float _accel_raw_sample_rates [ INS_MAX_INSTANCES ] ;
float _gyro_raw_sample_rates [ INS_MAX_INSTANCES ] ;
// how many sensors samples per notify to the backend
uint8_t _accel_over_sampling [ INS_MAX_INSTANCES ] ;
uint8_t _gyro_over_sampling [ INS_MAX_INSTANCES ] ;
// last sample time in microseconds. Use for deltaT calculations
// on non-FIFO sensors
uint64_t _accel_last_sample_us [ INS_MAX_INSTANCES ] ;
uint64_t _gyro_last_sample_us [ INS_MAX_INSTANCES ] ;
// sample times for checking real sensor rate for FIFO sensors
uint16_t _sample_accel_count [ INS_MAX_INSTANCES ] ;
uint32_t _sample_accel_start_us [ INS_MAX_INSTANCES ] ;
uint16_t _sample_gyro_count [ INS_MAX_INSTANCES ] ;
uint32_t _sample_gyro_start_us [ INS_MAX_INSTANCES ] ;
// temperatures for an instance if available
float _temperature [ INS_MAX_INSTANCES ] ;
// filtering frequency (0 means default)
AP_Int8 _accel_filter_cutoff ;
AP_Int8 _gyro_filter_cutoff ;
AP_Int8 _gyro_cal_timing ;
// use for attitude, velocity, position estimates
AP_Int8 _use [ INS_MAX_INSTANCES ] ;
// control enable of fast sampling
AP_Int8 _fast_sampling_mask ;
// control enable of detected sensors
AP_Int8 _enable_mask ;
// board orientation from AHRS
enum Rotation _board_orientation ;
// per-sensor orientation to allow for board type defaults at runtime
enum Rotation _gyro_orientation [ INS_MAX_INSTANCES ] ;
enum Rotation _accel_orientation [ INS_MAX_INSTANCES ] ;
// calibrated_ok/id_ok flags
bool _gyro_cal_ok [ INS_MAX_INSTANCES ] ;
bool _accel_id_ok [ INS_MAX_INSTANCES ] ;
// primary accel and gyro
uint8_t _primary_gyro ;
uint8_t _primary_accel ;
// bitmask bit which indicates if we should log raw accel and gyro data
uint32_t _log_raw_bit ;
// has wait_for_sample() found a sample?
bool _have_sample : 1 ;
// are we in HIL mode?
bool _hil_mode : 1 ;
// are gyros or accels currently being calibrated
bool _calibrating : 1 ;
bool _backends_detected : 1 ;
// the delta time in seconds for the last sample
float _delta_time ;
// last time a wait_for_sample() returned a sample
uint32_t _last_sample_usec ;
// target time for next wait_for_sample() return
uint32_t _next_sample_usec ;
// time between samples in microseconds
uint32_t _sample_period_usec ;
// last time update() completed
uint32_t _last_update_usec ;
// health of gyros and accels
bool _gyro_healthy [ INS_MAX_INSTANCES ] ;
bool _accel_healthy [ INS_MAX_INSTANCES ] ;
uint32_t _accel_error_count [ INS_MAX_INSTANCES ] ;
uint32_t _gyro_error_count [ INS_MAX_INSTANCES ] ;
// vibration and clipping
uint32_t _accel_clip_count [ INS_MAX_INSTANCES ] ;
LowPassFilterVector3f _accel_vibe_floor_filter [ INS_VIBRATION_CHECK_INSTANCES ] ;
LowPassFilterVector3f _accel_vibe_filter [ INS_VIBRATION_CHECK_INSTANCES ] ;
// peak hold detector state for primary accel
struct PeakHoldState {
float accel_peak_hold_neg_x ;
uint32_t accel_peak_hold_neg_x_age ;
} _peak_hold_state ;
// threshold for detecting stillness
AP_Float _still_threshold ;
/*
state for HIL support
*/
struct {
float delta_time ;
} _hil { } ;
// Trim options
AP_Int8 _acc_body_aligned ;
AP_Int8 _trim_option ;
static AP_InertialSensor * _s_instance ;
AP_AccelCal * _acal ;
AccelCalibrator * _accel_calibrator ;
//save accelerometer bias and scale factors
void _acal_save_calibrations ( ) ;
void _acal_event_failure ( ) ;
// Returns AccelCalibrator objects pointer for specified acceleromter
AccelCalibrator * _acal_get_calibrator ( uint8_t i ) { return i < get_accel_count ( ) ? & ( _accel_calibrator [ i ] ) : nullptr ; }
float _trim_pitch ;
float _trim_roll ;
bool _new_trim ;
bool _accel_cal_requires_reboot ;
// sensor error count at startup (used to ignore errors within 2 seconds of startup)
uint32_t _accel_startup_error_count [ INS_MAX_INSTANCES ] ;
uint32_t _gyro_startup_error_count [ INS_MAX_INSTANCES ] ;
bool _startup_error_counts_set ;
uint32_t _startup_ms ;
} ;
namespace AP {
AP_InertialSensor & ins ( ) ;
} ;