/*
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
/*
* APM_Baro . cpp - barometer driver
*
*/
# include "AP_Baro.h"
# include <utility>
# include <AP_Common/AP_Common.h>
# include <AP_HAL/AP_HAL.h>
# include <AP_Math/AP_Math.h>
# include <AP_BoardConfig/AP_BoardConfig.h>
# include <AP_Vehicle/AP_Vehicle_Type.h>
# include "AP_Baro_SITL.h"
# include "AP_Baro_BMP085.h"
# include "AP_Baro_BMP280.h"
# include "AP_Baro_HIL.h"
# include "AP_Baro_MS5611.h"
# include "AP_Baro_qflight.h"
# include "AP_Baro_QURT.h"
# if HAL_WITH_UAVCAN
# include "AP_Baro_UAVCAN.h"
# endif
# define C_TO_KELVIN 273.15f
// Gas Constant is from Aerodynamics for Engineering Students, Third Edition, E.L.Houghton and N.B.Carruthers
# define ISA_GAS_CONSTANT 287.26f
# define ISA_LAPSE_RATE 0.0065f
# define INTERNAL_TEMPERATURE_CLAMP 35.0f
extern const AP_HAL : : HAL & hal ;
// table of user settable parameters
const AP_Param : : GroupInfo AP_Baro : : var_info [ ] = {
// NOTE: Index numbers 0 and 1 were for the old integer
// ground temperature and pressure
// @Param: ABS_PRESS
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
// @Units: pascals
// @Increment: 1
// @ReadOnly: True
// @Volatile: True
// @User: Advanced
AP_GROUPINFO ( " ABS_PRESS " , 2 , AP_Baro , sensors [ 0 ] . ground_pressure , 0 ) ,
// @Param: TEMP
// @DisplayName: ground temperature
// @Description: calibrated ground temperature in degrees Celsius
// @Units: degrees celsius
// @Increment: 1
// @ReadOnly: True
// @Volatile: True
// @User: Advanced
AP_GROUPINFO ( " TEMP " , 3 , AP_Baro , _user_ground_temperature , 0 ) ,
// index 4 reserved for old AP_Int8 version in legacy FRAM
//AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0),
// @Param: ALT_OFFSET
// @DisplayName: altitude offset
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.
// @Units: meters
// @Increment: 0.1
// @User: Advanced
AP_GROUPINFO ( " ALT_OFFSET " , 5 , AP_Baro , _alt_offset , 0 ) ,
// @Param: PRIMARY
// @DisplayName: Primary barometer
// @Description: This selects which barometer will be the primary if multiple barometers are found
// @Values: 0:FirstBaro,1:2ndBaro,2:3rdBaro
// @User: Advanced
AP_GROUPINFO ( " PRIMARY " , 6 , AP_Baro , _primary_baro , 0 ) ,
// @Param: EXT_BUS
// @DisplayName: External baro bus
// @Description: This selects the bus number for looking for an I2C barometer
// @Values: -1:Disabled,0:Bus0,1:Bus1
// @User: Advanced
AP_GROUPINFO ( " EXT_BUS " , 7 , AP_Baro , _ext_bus , - 1 ) ,
// @Param: SPEC_GRAV
// @DisplayName: Specific Gravity (For water depth measurement)
// @Description: This sets the specific gravity of the fluid when flying an underwater ROV.
// @Values: 1.0:Freshwater,1.024:Saltwater
AP_GROUPINFO_FRAME ( " SPEC_GRAV " , 8 , AP_Baro , _specific_gravity , 1.0 , AP_PARAM_FRAME_SUB ) ,
# if BARO_MAX_INSTANCES > 1
// @Param: ABS_PRESS2
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
// @Units: pascals
// @Increment: 1
// @ReadOnly: True
// @Volatile: True
// @User: Advanced
AP_GROUPINFO ( " ABS_PRESS2 " , 9 , AP_Baro , sensors [ 1 ] . ground_pressure , 0 ) ,
// Slot 10 used to be TEMP2
# endif
# if BARO_MAX_INSTANCES > 2
// @Param: ABS_PRESS3
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
// @Units: pascals
// @Increment: 1
// @ReadOnly: True
// @Volatile: True
// @User: Advanced
AP_GROUPINFO ( " ABS_PRESS3 " , 11 , AP_Baro , sensors [ 2 ] . ground_pressure , 0 ) ,
// Slot 12 used to be TEMP3
# endif
AP_GROUPEND
} ;
/*
AP_Baro constructor
*/
AP_Baro : : AP_Baro ( )
{
AP_Param : : setup_object_defaults ( this , var_info ) ;
}
// calibrate the barometer. This must be called at least once before
// the altitude() or climb_rate() interfaces can be used
void AP_Baro : : calibrate ( bool save )
{
// reset the altitude offset when we calibrate. The altitude
// offset is supposed to be for within a flight
_alt_offset . set_and_save ( 0 ) ;
// start by assuming all sensors are calibrated (for healthy() test)
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
sensors [ i ] . calibrated = true ;
sensors [ i ] . alt_ok = true ;
}
// let the barometer settle for a full second after startup
// the MS5611 reads quite a long way off for the first second,
// leading to about 1m of error if we don't wait
for ( uint8_t i = 0 ; i < 10 ; i + + ) {
uint32_t tstart = AP_HAL : : millis ( ) ;
do {
update ( ) ;
if ( AP_HAL : : millis ( ) - tstart > 500 ) {
AP_HAL : : panic ( " PANIC: AP_Baro::read unsuccessful "
" for more than 500ms in AP_Baro::calibrate [2] \r \n " ) ;
}
hal . scheduler - > delay ( 10 ) ;
} while ( ! healthy ( ) ) ;
hal . scheduler - > delay ( 100 ) ;
}
// now average over 5 values for the ground pressure and
// temperature settings
float sum_pressure [ BARO_MAX_INSTANCES ] = { 0 } ;
float sum_temperature [ BARO_MAX_INSTANCES ] = { 0 } ;
uint8_t count [ BARO_MAX_INSTANCES ] = { 0 } ;
const uint8_t num_samples = 5 ;
for ( uint8_t c = 0 ; c < num_samples ; c + + ) {
uint32_t tstart = AP_HAL : : millis ( ) ;
do {
update ( ) ;
if ( AP_HAL : : millis ( ) - tstart > 500 ) {
AP_HAL : : panic ( " PANIC: AP_Baro::read unsuccessful "
" for more than 500ms in AP_Baro::calibrate [3] \r \n " ) ;
}
} while ( ! healthy ( ) ) ;
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( healthy ( i ) ) {
sum_pressure [ i ] + = sensors [ i ] . pressure ;
sum_temperature [ i ] + = sensors [ i ] . temperature ;
count [ i ] + = 1 ;
}
}
hal . scheduler - > delay ( 100 ) ;
}
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( count [ i ] = = 0 ) {
sensors [ i ] . calibrated = false ;
} else {
if ( save ) {
sensors [ i ] . ground_pressure . set_and_save ( sum_pressure [ i ] / count [ i ] ) ;
}
}
}
_guessed_ground_temperature = get_external_temperature ( ) ;
// panic if all sensors are not calibrated
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( sensors [ i ] . calibrated ) {
return ;
}
}
AP_HAL : : panic ( " AP_Baro: all sensors uncalibrated " ) ;
}
/*
update the barometer calibration
this updates the baro ground calibration to the current values . It
can be used before arming to keep the baro well calibrated
*/
void AP_Baro : : update_calibration ( )
{
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( healthy ( i ) ) {
sensors [ i ] . ground_pressure . set ( get_pressure ( i ) ) ;
}
// don't notify the GCS too rapidly or we flood the link
uint32_t now = AP_HAL : : millis ( ) ;
if ( now - _last_notify_ms > 10000 ) {
sensors [ i ] . ground_pressure . notify ( ) ;
_last_notify_ms = now ;
}
}
// always update the guessed ground temp
_guessed_ground_temperature = get_external_temperature ( ) ;
// force EAS2TAS to recalculate
_EAS2TAS = 0 ;
}
// return altitude difference in meters between current pressure and a
// given base_pressure in Pascal
float AP_Baro : : get_altitude_difference ( float base_pressure , float pressure ) const
{
float ret ;
float temp = get_ground_temperature ( ) + C_TO_KELVIN ;
float scaling = pressure / base_pressure ;
// This is an exact calculation that is within +-2.5m of the standard
// atmosphere tables in the troposphere (up to 11,000 m amsl).
ret = 153.8462f * temp * ( 1.0f - expf ( 0.190259f * logf ( scaling ) ) ) ;
return ret ;
}
// return current scale factor that converts from equivalent to true airspeed
// valid for altitudes up to 10km AMSL
// assumes standard atmosphere lapse rate
float AP_Baro : : get_EAS2TAS ( void )
{
float altitude = get_altitude ( ) ;
if ( ( fabsf ( altitude - _last_altitude_EAS2TAS ) < 25.0f ) & & ! is_zero ( _EAS2TAS ) ) {
// not enough change to require re-calculating
return _EAS2TAS ;
}
// only estimate lapse rate for the difference from the ground location
// provides a more consistent reading then trying to estimate a complete
// ISA model atmosphere
float tempK = get_ground_temperature ( ) + C_TO_KELVIN - ISA_LAPSE_RATE * altitude ;
_EAS2TAS = safe_sqrt ( 1.225f / ( ( float ) get_pressure ( ) / ( ISA_GAS_CONSTANT * tempK ) ) ) ;
_last_altitude_EAS2TAS = altitude ;
return _EAS2TAS ;
}
// return air density / sea level density - decreases as altitude climbs
float AP_Baro : : get_air_density_ratio ( void )
{
const float eas2tas = get_EAS2TAS ( ) ;
if ( eas2tas > 0.0f ) {
return 1.0f / ( sq ( eas2tas ) ) ;
} else {
return 1.0f ;
}
}
// return current climb_rate estimate relative to time that calibrate()
// was called. Returns climb rate in meters/s, positive means up
// note that this relies on read() being called regularly to get new data
float AP_Baro : : get_climb_rate ( void )
{
if ( _hil . have_alt ) {
return _hil . climb_rate ;
}
// we use a 7 point derivative filter on the climb rate. This seems
// to produce somewhat reasonable results on real hardware
return _climb_rate_filter . slope ( ) * 1.0e3 f ;
}
// returns the ground temperature in degrees C, selecting either a user
// provided one, or the internal estimate
float AP_Baro : : get_ground_temperature ( void ) const
{
if ( is_zero ( _user_ground_temperature ) ) {
return _guessed_ground_temperature ;
} else {
return _user_ground_temperature ;
}
}
/*
set external temperature to be used for calibration ( degrees C )
*/
void AP_Baro : : set_external_temperature ( float temperature )
{
_external_temperature = temperature ;
_last_external_temperature_ms = AP_HAL : : millis ( ) ;
}
/*
get the temperature in degrees C to be used for calibration purposes
*/
float AP_Baro : : get_external_temperature ( const uint8_t instance ) const
{
// if we have a recent external temperature then use it
if ( _last_external_temperature_ms ! = 0 & & AP_HAL : : millis ( ) - _last_external_temperature_ms < 10000 ) {
return _external_temperature ;
}
// if we don't have an external temperature then use the minimum
// of the barometer temperature and 35 degrees C. The reason for
// not just using the baro temperature is it tends to read high,
// often 30 degrees above the actual temperature. That means the
// EAS2TAS tends to be off by quite a large margin, as well as
// the calculation of altitude difference betweeen two pressures
// reporting a high temperature will cause the aircraft to
// estimate itself as flying higher then it actually is.
return MIN ( get_temperature ( instance ) , INTERNAL_TEMPERATURE_CLAMP ) ;
}
bool AP_Baro : : _add_backend ( AP_Baro_Backend * backend )
{
if ( ! backend ) {
return false ;
}
if ( _num_drivers > = BARO_MAX_DRIVERS ) {
AP_HAL : : panic ( " Too many barometer drivers " ) ;
}
drivers [ _num_drivers + + ] = backend ;
return true ;
}
/*
macro to add a backend with check for too many sensors
We don ' t try to start more than the maximum allowed
*/
# define ADD_BACKEND(backend) \
do { _add_backend ( backend ) ; \
if ( _num_drivers = = BARO_MAX_DRIVERS | | \
_num_sensors = = BARO_MAX_INSTANCES ) { \
return ; \
} \
} while ( 0 )
/*
initialise the barometer object , loading backend drivers
*/
void AP_Baro : : init ( void )
{
// ensure that there isn't a previous ground temperature saved
if ( ! is_zero ( _user_ground_temperature ) ) {
_user_ground_temperature . set_and_save ( 0.0f ) ;
_user_ground_temperature . notify ( ) ;
}
if ( _hil_mode ) {
drivers [ 0 ] = new AP_Baro_HIL ( * this ) ;
_num_drivers = 1 ;
return ;
}
# if CONFIG_HAL_BOARD == HAL_BOARD_SITL
ADD_BACKEND ( new AP_Baro_SITL ( * this ) ) ;
return ;
# endif
# if HAL_BARO_DEFAULT == HAL_BARO_PX4 || HAL_BARO_DEFAULT == HAL_BARO_VRBRAIN
switch ( AP_BoardConfig : : get_board_type ( ) ) {
case AP_BoardConfig : : PX4_BOARD_PX4V1 :
# ifdef HAL_BARO_MS5611_I2C_BUS
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_MS5611_I2C_BUS , HAL_BARO_MS5611_I2C_ADDR ) ) ) ) ;
# endif
break ;
case AP_BoardConfig : : PX4_BOARD_PIXHAWK :
case AP_BoardConfig : : PX4_BOARD_PHMINI :
case AP_BoardConfig : : PX4_BOARD_AUAV21 :
case AP_BoardConfig : : PX4_BOARD_PH2SLIM :
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_MS5611_NAME ) ) ) ) ;
break ;
case AP_BoardConfig : : PX4_BOARD_PIXHAWK2 :
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_MS5611_SPI_EXT_NAME ) ) ) ) ;
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_MS5611_NAME ) ) ) ) ;
break ;
case AP_BoardConfig : : PX4_BOARD_PIXRACER :
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_MS5611_SPI_INT_NAME ) ) ) ) ;
break ;
case AP_BoardConfig : : PX4_BOARD_AEROFC :
# ifdef HAL_BARO_MS5607_I2C_BUS
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_MS5607_I2C_BUS , HAL_BARO_MS5607_I2C_ADDR ) ) ,
AP_Baro_MS56XX : : BARO_MS5607 ) ) ;
# endif
break ;
default :
break ;
}
# elif HAL_BARO_DEFAULT == HAL_BARO_HIL
drivers [ 0 ] = new AP_Baro_HIL ( * this ) ;
_num_drivers = 1 ;
# elif HAL_BARO_DEFAULT == HAL_BARO_BMP085
drivers [ 0 ] = new AP_Baro_BMP085 ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_BMP085_BUS , HAL_BARO_BMP085_I2C_ADDR ) ) ) ;
_num_drivers = 1 ;
# elif HAL_BARO_DEFAULT == HAL_BARO_BMP280_I2C
ADD_BACKEND ( AP_Baro_BMP280 : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_BMP280_BUS , HAL_BARO_BMP280_I2C_ADDR ) ) ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_BMP280_SPI
ADD_BACKEND ( AP_Baro_BMP280 : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_BMP280_NAME ) ) ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_I2C
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_MS5611_I2C_BUS , HAL_BARO_MS5611_I2C_ADDR ) ) ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5611_SPI
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . spi - > get_device ( HAL_BARO_MS5611_NAME ) ) ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5607_I2C
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_MS5607_I2C_BUS , HAL_BARO_MS5607_I2C_ADDR ) ) ,
AP_Baro_MS56XX : : BARO_MS5607 ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_MS5637_I2C
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( HAL_BARO_MS5637_I2C_BUS , HAL_BARO_MS5637_I2C_ADDR ) ) ,
AP_Baro_MS56XX : : BARO_MS5637 ) ) ;
# elif HAL_BARO_DEFAULT == HAL_BARO_QFLIGHT
drivers [ 0 ] = new AP_Baro_QFLIGHT ( * this ) ;
_num_drivers = 1 ;
# elif HAL_BARO_DEFAULT == HAL_BARO_QURT
drivers [ 0 ] = new AP_Baro_QURT ( * this ) ;
_num_drivers = 1 ;
# endif
// can optionally have baro on I2C too
if ( _ext_bus > = 0 ) {
# if APM_BUILD_TYPE(APM_BUILD_ArduSub)
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( _ext_bus , HAL_BARO_MS5837_I2C_ADDR ) ) , AP_Baro_MS56XX : : BARO_MS5837 ) ) ;
# else
ADD_BACKEND ( AP_Baro_MS56XX : : probe ( * this ,
std : : move ( hal . i2c_mgr - > get_device ( _ext_bus , HAL_BARO_MS5611_I2C_ADDR ) ) ) ) ;
# endif
}
# if HAL_WITH_UAVCAN
// If there is place left - allocate one UAVCAN based baro
if ( ( AP_BoardConfig : : get_can_enable ( ) ! = 0 ) & & ( hal . can_mgr ! = nullptr ) )
{
if ( _num_drivers < BARO_MAX_DRIVERS & & _num_sensors < BARO_MAX_INSTANCES )
{
printf ( " Creating AP_Baro_UAVCAN \n \r " ) ;
drivers [ _num_drivers ] = new AP_Baro_UAVCAN ( * this ) ;
_num_drivers + + ;
}
}
# endif
if ( _num_drivers = = 0 | | _num_sensors = = 0 | | drivers [ 0 ] = = nullptr ) {
AP_BoardConfig : : sensor_config_error ( " Baro: unable to initialise driver " ) ;
}
}
/*
call update on all drivers
*/
void AP_Baro : : update ( void )
{
if ( fabsf ( _alt_offset - _alt_offset_active ) > 0.01f ) {
// If there's more than 1cm difference then slowly slew to it via LPF.
// The EKF does not like step inputs so this keeps it happy.
_alt_offset_active = ( 0.95f * _alt_offset_active ) + ( 0.05f * _alt_offset ) ;
} else {
_alt_offset_active = _alt_offset ;
}
if ( ! _hil_mode ) {
for ( uint8_t i = 0 ; i < _num_drivers ; i + + ) {
drivers [ i ] - > update ( ) ;
}
}
// consider a sensor as healthy if it has had an update in the
// last 0.5 seconds
uint32_t now = AP_HAL : : millis ( ) ;
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
sensors [ i ] . healthy = ( now - sensors [ i ] . last_update_ms < 500 ) & & ! is_zero ( sensors [ i ] . pressure ) ;
}
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( sensors [ i ] . healthy ) {
// update altitude calculation
float ground_pressure = sensors [ i ] . ground_pressure ;
if ( is_zero ( ground_pressure ) | | isnan ( ground_pressure ) | | isinf ( ground_pressure ) ) {
sensors [ i ] . ground_pressure = sensors [ i ] . pressure ;
}
float altitude = sensors [ i ] . altitude ;
if ( sensors [ i ] . type = = BARO_TYPE_AIR ) {
float pressure = sensors [ i ] . pressure + sensors [ i ] . p_correction ;
altitude = get_altitude_difference ( sensors [ i ] . ground_pressure , pressure ) ;
} else if ( sensors [ i ] . type = = BARO_TYPE_WATER ) {
//101325Pa is sea level air pressure, 9800 Pascal/ m depth in water.
//No temperature or depth compensation for density of water.
altitude = ( sensors [ i ] . ground_pressure - sensors [ i ] . pressure ) / 9800.0f / _specific_gravity ;
}
// sanity check altitude
sensors [ i ] . alt_ok = ! ( isnan ( altitude ) | | isinf ( altitude ) ) ;
if ( sensors [ i ] . alt_ok ) {
sensors [ i ] . altitude = altitude + _alt_offset_active ;
}
}
if ( _hil . have_alt ) {
sensors [ 0 ] . altitude = _hil . altitude ;
}
if ( _hil . have_last_update ) {
sensors [ 0 ] . last_update_ms = _hil . last_update_ms ;
}
}
// ensure the climb rate filter is updated
if ( healthy ( ) ) {
_climb_rate_filter . update ( get_altitude ( ) , get_last_update ( ) ) ;
}
// choose primary sensor
if ( _primary_baro > = 0 & & _primary_baro < _num_sensors & & healthy ( _primary_baro ) ) {
_primary = _primary_baro ;
} else {
_primary = 0 ;
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( healthy ( i ) ) {
_primary = i ;
break ;
}
}
}
}
/*
call accumulate on all drivers
*/
void AP_Baro : : accumulate ( void )
{
for ( uint8_t i = 0 ; i < _num_drivers ; i + + ) {
drivers [ i ] - > accumulate ( ) ;
}
}
/* register a new sensor, claiming a sensor slot. If we are out of
slots it will panic
*/
uint8_t AP_Baro : : register_sensor ( void )
{
if ( _num_sensors > = BARO_MAX_INSTANCES ) {
AP_HAL : : panic ( " Too many barometers " ) ;
}
return _num_sensors + + ;
}
/*
check if all barometers are healthy
*/
bool AP_Baro : : all_healthy ( void ) const
{
for ( uint8_t i = 0 ; i < _num_sensors ; i + + ) {
if ( ! healthy ( i ) ) {
return false ;
}
}
return _num_sensors > 0 ;
}
// set a pressure correction from AP_TempCalibration
void AP_Baro : : set_pressure_correction ( uint8_t instance , float p_correction )
{
if ( instance < _num_sensors ) {
sensors [ instance ] . p_correction = p_correction ;
}
}