// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_MotorsHeli.h
/// @brief Motor control class for Traditional Heli
# ifndef __AP_MOTORS_HELI_H__
# define __AP_MOTORS_HELI_H__
# include <inttypes.h>
# include <AP_Common/AP_Common.h>
# include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
# include <RC_Channel/RC_Channel.h> // RC Channel Library
# include "AP_Motors.h"
# include "AP_MotorsHeli_RSC.h"
// maximum number of swashplate servos
# define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3
// servo output rates
# define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
# define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos
# define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
// default swash min and max angles and positions
# define AP_MOTORS_HELI_SWASH_ROLL_MAX 2500
# define AP_MOTORS_HELI_SWASH_PITCH_MAX 2500
# define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
# define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
# define AP_MOTORS_HELI_COLLECTIVE_MID 1500
// swash min and max position while in stabilize mode (as a number from 0 ~ 100)
# define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
# define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
// swash min while landed or landing (as a number from 0 ~ 1000
# define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0
// main rotor speed control types (ch8 out)
# define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver, pilot controls ESC speed through transmitter directly
# define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out), pilot desired rotor speed provided by CH8 input
# define AP_MOTORS_HELI_RSC_MODE_SETPOINT 2 // main rotor ESC is connected to RC8 (out), desired speed is held in RSC_SETPOINT parameter
// default main rotor speed (ch8 out) as a number from 0 ~ 1000
# define AP_MOTORS_HELI_RSC_SETPOINT 700
// default main rotor critical speed
# define AP_MOTORS_HELI_RSC_CRITICAL 500
// default main rotor ramp up time in seconds
# define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly)
# define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed
// flybar types
# define AP_MOTORS_HELI_NOFLYBAR 0
# define AP_MOTORS_HELI_FLYBAR 1
class AP_HeliControls ;
/// @class AP_MotorsHeli
class AP_MotorsHeli : public AP_Motors {
public :
/// Constructor
AP_MotorsHeli ( uint16_t loop_rate ,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT ) :
AP_Motors ( loop_rate , speed_hz )
{
AP_Param : : setup_object_defaults ( this , var_info ) ;
// initialise flags
_heliflags . swash_initialised = 0 ;
_heliflags . landing_collective = 0 ;
_heliflags . rotor_runup_complete = 0 ;
} ;
// init
void Init ( ) ;
// set update rate to motors - a value in hertz
// you must have setup_motors before calling this
virtual void set_update_rate ( uint16_t speed_hz ) = 0 ;
// enable - starts allowing signals to be sent to motors
virtual void enable ( ) = 0 ;
// output_min - sets servos to neutral point
void output_min ( ) ;
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test ( uint8_t motor_seq , int16_t pwm ) = 0 ;
// slow_start - ignored by helicopters
void slow_start ( bool true_false ) { } ;
//
// heli specific methods
//
// allow_arming - returns true if main rotor is spinning and it is ok to arm
virtual bool allow_arming ( ) const = 0 ;
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
bool parameter_check ( ) const ;
// has_flybar - returns true if we have a mechical flybar
virtual bool has_flybar ( ) const { return AP_MOTORS_HELI_NOFLYBAR ; }
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
int16_t get_collective_mid ( ) const { return _collective_mid ; }
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
int16_t get_collective_out ( ) const { return _collective_out ; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing ( bool landing ) { _heliflags . landing_collective = landing ; }
// get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_NONE, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT)
uint8_t get_rsc_mode ( ) const { return _rsc_mode ; }
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1000)
int16_t get_rsc_setpoint ( ) const { return _rsc_setpoint ; }
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
virtual void set_desired_rotor_speed ( int16_t desired_speed ) = 0 ;
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
virtual int16_t get_desired_rotor_speed ( ) const = 0 ;
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
virtual int16_t get_estimated_rotor_speed ( ) const = 0 ;
// return true if the main rotor is up to speed
bool rotor_runup_complete ( ) const ;
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
virtual bool rotor_speed_above_critical ( ) const = 0 ;
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
virtual void recalc_scalers ( ) = 0 ;
// var_info for holding Parameter information
static const struct AP_Param : : GroupInfo var_info [ ] ;
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void set_delta_phase_angle ( int16_t angle ) ;
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask ( ) = 0 ;
// set_radio_passthrough used to pass radio inputs directly to outputs
void set_radio_passthrough ( int16_t radio_roll_input , int16_t radio_pitch_input , int16_t radio_throttle_input , int16_t radio_yaw_input ) ;
// reset_radio_passthrough used to reset all radio inputs to center
void reset_radio_passthrough ( ) ;
// output - sends commands to the motors
void output ( ) ;
// supports_yaw_passthrough
virtual bool supports_yaw_passthrough ( ) const { return false ; }
protected :
// output - sends commands to the motors
virtual void output_armed_stabilizing ( ) = 0 ;
void output_armed_not_stabilizing ( ) ;
void output_armed_zero_throttle ( ) ;
virtual void output_disarmed ( ) = 0 ;
// update the throttle input filter
void update_throttle_filter ( ) ;
// heli_move_swash - moves swash plate to attitude of parameters passed in
virtual void move_swash ( int16_t roll_out , int16_t pitch_out , int16_t coll_in , int16_t yaw_out ) = 0 ;
// reset_swash - free up swash for maximum movements. Used for set-up
void reset_swash ( ) ;
// reset_servos - free up the swash servos for maximum movement
virtual void reset_servos ( ) = 0 ;
// reset_swash_servo - free up swash servo for maximum movement
static void reset_swash_servo ( RC_Channel & servo ) ;
// init_swash - initialise the swash plate
void init_swash ( ) ;
// init_servos - initialize the servos
virtual void init_servos ( ) = 0 ;
// init_swash_servo - initialize a swash servo
static void init_swash_servo ( RC_Channel & servo ) ;
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
virtual void calculate_roll_pitch_collective_factors ( ) = 0 ;
// flags bitmask
struct heliflags_type {
uint8_t swash_initialised : 1 ; // true if swash has been initialised
uint8_t landing_collective : 1 ; // true if collective is setup for landing which has much higher minimum
uint8_t rotor_runup_complete : 1 ; // true if the rotors have had enough time to wind up
} _heliflags ;
// parameters
AP_Int16 _roll_max ; // Maximum roll angle of the swash plate in centi-degrees
AP_Int16 _pitch_max ; // Maximum pitch angle of the swash plate in centi-degrees
AP_Int16 _collective_min ; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max ; // Highest possible servo position for the swashplate
AP_Int16 _collective_mid ; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
AP_Int8 _servo_manual ; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 _rsc_setpoint ; // rotor speed when RSC mode is set to is enabledv
AP_Int8 _rsc_mode ; // Which main rotor ESC control mode is active
AP_Int8 _rsc_ramp_time ; // Time in seconds for the output to the main rotor's ESC to reach full speed
AP_Int8 _rsc_runup_time ; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time
AP_Int16 _land_collective_min ; // Minimum collective when landed or landing
AP_Int16 _rsc_critical ; // Rotor speed below which flight is not possible
// internal variables
float _rollFactor [ AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS ] ;
float _pitchFactor [ AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS ] ;
float _collectiveFactor [ AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS ] ;
float _roll_scaler = 1 ; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
float _pitch_scaler = 1 ; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
float _collective_scalar = 1 ; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
float _collective_scalar_manual = 1 ; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot)
int16_t _collective_out = 0 ; // actual collective pitch value. Required by the main code for calculating cruise throttle
int16_t _collective_mid_pwm = 0 ; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
int16_t _delta_phase_angle = 0 ; // phase angle dynamic compensation
int16_t _roll_radio_passthrough = 0 ; // roll control PWM direct from radio, used for manual control
int16_t _pitch_radio_passthrough = 0 ; // pitch control PWM direct from radio, used for manual control
int16_t _throttle_radio_passthrough = 0 ; // throttle control PWM direct from radio, used for manual control
int16_t _yaw_radio_passthrough = 0 ; // yaw control PWM direct from radio, used for manual control
} ;
# endif // AP_MOTORSHELI