/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
# ifndef __AP_INERTIAL_SENSOR_H__
# define __AP_INERTIAL_SENSOR_H__
// Gyro and Accelerometer calibration criteria
# define AP_INERTIAL_SENSOR_ACCEL_TOT_MAX_OFFSET_CHANGE 4.0f
# define AP_INERTIAL_SENSOR_ACCEL_MAX_OFFSET 250.0f
/**
maximum number of INS instances available on this platform . If more
than 1 then redundent sensors may be available
*/
# if HAL_CPU_CLASS > HAL_CPU_CLASS_16
# define INS_MAX_INSTANCES 3
# else
# define INS_MAX_INSTANCES 1
# endif
# include <stdint.h>
# include <AP_HAL.h>
# include <AP_Math.h>
# include "AP_InertialSensor_UserInteract.h"
class AP_InertialSensor_Backend ;
/* AP_InertialSensor is an abstraction for gyro and accel measurements
* which are correctly aligned to the body axes and scaled to SI units .
*
* Gauss - Newton accel calibration routines borrowed from Rolfe Schmidt
* blog post describing the method : http : //chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
* original sketch available at http : //rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
*/
class AP_InertialSensor
{
friend class AP_InertialSensor_Backend ;
public :
AP_InertialSensor ( ) ;
enum Start_style {
COLD_START = 0 ,
WARM_START
} ;
// the rate that updates will be available to the application
enum Sample_rate {
RATE_50HZ ,
RATE_100HZ ,
RATE_200HZ ,
RATE_400HZ
} ;
/// Perform startup initialisation.
///
/// Called to initialise the state of the IMU.
///
/// For COLD_START, implementations using real sensors can assume
/// that the airframe is stationary and nominally oriented.
///
/// For WARM_START, no assumptions should be made about the
/// orientation or motion of the airframe. Calibration should be
/// as for the previous COLD_START call.
///
/// @param style The initialisation startup style.
///
void init ( Start_style style ,
Sample_rate sample_rate ) ;
/// Perform cold startup initialisation for just the accelerometers.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work.
///
void init_accel ( ) ;
/// Register a new gyro/accel driver, allocating an instance
/// number
uint8_t register_gyro ( void ) ;
uint8_t register_accel ( void ) ;
# if !defined( __AVR_ATmega1280__ )
// perform accelerometer calibration including providing user instructions
// and feedback
bool calibrate_accel ( AP_InertialSensor_UserInteract * interact ,
float & trim_roll ,
float & trim_pitch ) ;
# endif
/// calibrated - returns true if the accelerometers have been calibrated
///
/// @note this should not be called while flying because it reads from the eeprom which can be slow
///
bool calibrated ( ) ;
/// Perform cold-start initialisation for just the gyros.
///
/// @note This should not be called unless ::init has previously
/// been called, as ::init may perform other work
///
void init_gyro ( void ) ;
/// Fetch the current gyro values
///
/// @returns vector of rotational rates in radians/sec
///
const Vector3f & get_gyro ( uint8_t i ) const { return _gyro [ i ] ; }
const Vector3f & get_gyro ( void ) const { return get_gyro ( _primary_gyro ) ; }
void set_gyro ( uint8_t instance , const Vector3f & gyro ) ;
// set gyro offsets in radians/sec
const Vector3f & get_gyro_offsets ( uint8_t i ) const { return _gyro_offset [ i ] ; }
const Vector3f & get_gyro_offsets ( void ) const { return get_gyro_offsets ( _primary_gyro ) ; }
/// Fetch the current accelerometer values
///
/// @returns vector of current accelerations in m/s/s
///
const Vector3f & get_accel ( uint8_t i ) const { return _accel [ i ] ; }
const Vector3f & get_accel ( void ) const { return get_accel ( _primary_accel ) ; }
void set_accel ( uint8_t instance , const Vector3f & accel ) ;
// multi-device interface
bool get_gyro_health ( uint8_t instance ) const { return true ; }
bool get_gyro_health ( void ) const { return get_gyro_health ( _primary_gyro ) ; }
bool get_gyro_health_all ( void ) const ;
uint8_t get_gyro_count ( void ) const { return _gyro_count ; }
bool gyro_calibrated_ok ( uint8_t instance ) const { return _gyro_cal_ok [ instance ] ; }
bool gyro_calibrated_ok_all ( ) const ;
bool get_accel_health ( uint8_t instance ) const { return true ; }
bool get_accel_health ( void ) const { return get_accel_health ( _primary_accel ) ; }
bool get_accel_health_all ( void ) const ;
uint8_t get_accel_count ( void ) const { return _accel_count ; } ;
// get accel offsets in m/s/s
const Vector3f & get_accel_offsets ( uint8_t i ) const { return _accel_offset [ i ] ; }
const Vector3f & get_accel_offsets ( void ) const { return get_accel_offsets ( _primary_accel ) ; }
// get accel scale
const Vector3f & get_accel_scale ( uint8_t i ) const { return _accel_scale [ i ] ; }
const Vector3f & get_accel_scale ( void ) const { return get_accel_scale ( _primary_accel ) ; }
/* get_delta_time returns the time period in seconds
* overwhich the sensor data was collected
*/
float get_delta_time ( ) const { return _delta_time ; }
// return the maximum gyro drift rate in radians/s/s. This
// depends on what gyro chips are being used
float get_gyro_drift_rate ( void ) const { return ToRad ( 0.5f / 60 ) ; }
// update gyro and accel values from accumulated samples
void update ( void ) ;
// wait for a sample to be available
void wait_for_sample ( void ) ;
// class level parameters
static const struct AP_Param : : GroupInfo var_info [ ] ;
// set overall board orientation
void set_board_orientation ( enum Rotation orientation ) {
_board_orientation = orientation ;
}
// override default filter frequency
void set_default_filter ( float filter_hz ) {
if ( ! _mpu6000_filter . load ( ) ) {
_mpu6000_filter . set ( filter_hz ) ;
}
}
// get_filter - return filter in hz
uint8_t get_filter ( ) const { return _mpu6000_filter . get ( ) ; }
uint16_t error_count ( void ) const { return 0 ; }
bool healthy ( void ) const { return get_gyro_health ( ) & & get_accel_health ( ) ; }
uint8_t get_primary_accel ( void ) const { return 0 ; }
private :
// load backend drivers
void _detect_backends ( Sample_rate sample_rate ) ;
// accel and gyro initialisation
void _init_accel ( ) ;
void _init_gyro ( ) ;
# if !defined( __AVR_ATmega1280__ )
// Calibration routines borrowed from Rolfe Schmidt
// blog post describing the method: http://chionophilous.wordpress.com/2011/10/24/accelerometer-calibration-iv-1-implementing-gauss-newton-on-an-atmega/
// original sketch available at http://rolfeschmidt.com/mathtools/skimetrics/adxl_gn_calibration.pde
// _calibrate_accel - perform low level accel calibration
bool _calibrate_accel ( Vector3f accel_sample [ 6 ] , Vector3f & accel_offsets , Vector3f & accel_scale ) ;
void _calibrate_update_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] , float beta [ 6 ] , float data [ 3 ] ) ;
void _calibrate_reset_matrices ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] ) ;
void _calibrate_find_delta ( float dS [ 6 ] , float JS [ 6 ] [ 6 ] , float delta [ 6 ] ) ;
void _calculate_trim ( Vector3f accel_sample , float & trim_roll , float & trim_pitch ) ;
# endif
// save parameters to eeprom
void _save_parameters ( ) ;
// backend objects
AP_InertialSensor_Backend * _backends [ INS_MAX_INSTANCES ] ;
// number of gyros and accel drivers. Note that most backends
// provide both accel and gyro data, so will increment both
// counters on initialisation
uint8_t _gyro_count ;
uint8_t _accel_count ;
// Most recent accelerometer reading
Vector3f _accel [ INS_MAX_INSTANCES ] ;
// Most recent gyro reading
Vector3f _gyro [ INS_MAX_INSTANCES ] ;
// timestamp of latest gyro and accel readings
uint32_t _last_gyro_sample_time_usec [ INS_MAX_INSTANCES ] ;
uint32_t _last_accel_sample_time_usec [ INS_MAX_INSTANCES ] ;
// product id
AP_Int16 _product_id ;
// accelerometer scaling and offsets
AP_Vector3f _accel_scale [ INS_MAX_INSTANCES ] ;
AP_Vector3f _accel_offset [ INS_MAX_INSTANCES ] ;
AP_Vector3f _gyro_offset [ INS_MAX_INSTANCES ] ;
// filtering frequency (0 means default)
AP_Int8 _mpu6000_filter ;
// board orientation from AHRS
enum Rotation _board_orientation ;
// calibrated_ok flags
bool _gyro_cal_ok [ INS_MAX_INSTANCES ] ;
// primary accel and gyro
uint8_t _primary_gyro ;
uint8_t _primary_accel ;
// time between samples
float _delta_time ;
// last time a wait_for_sample() returned a sample
uint32_t _last_sample_usec ;
// time between samples in microseconds
uint32_t _sample_period_usec ;
} ;
# include "AP_InertialSensor_Backend.h"
# include "AP_InertialSensor_MPU6000.h"
# include "AP_InertialSensor_PX4.h"
# include "AP_InertialSensor_HIL.h"
# include "AP_InertialSensor_UserInteract_Stream.h"
# include "AP_InertialSensor_UserInteract_MAVLink.h"
# endif // __AP_INERTIAL_SENSOR_H__