5 changed files with 551 additions and 1 deletions
@ -0,0 +1,479 @@
@@ -0,0 +1,479 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
|
||||
/*
|
||||
* AP_Motors6DOF.cpp - ArduSub motors library |
||||
*/ |
||||
|
||||
#include <AP_HAL/AP_HAL.h> |
||||
#include "AP_Motors6DOF.h" |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
// parameters for the motor class
|
||||
const AP_Param::GroupInfo AP_Motors6DOF::var_info[] = { |
||||
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), |
||||
// @Param: 1_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("1_DIRECTION", 1, AP_Motors6DOF, _motor_reverse[0], 1), |
||||
|
||||
// @Param: 2_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("2_DIRECTION", 2, AP_Motors6DOF, _motor_reverse[1], 1), |
||||
|
||||
// @Param: 3_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("3_DIRECTION", 3, AP_Motors6DOF, _motor_reverse[2], 1), |
||||
|
||||
// @Param: 4_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("4_DIRECTION", 4, AP_Motors6DOF, _motor_reverse[3], 1), |
||||
|
||||
// @Param: 5_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("5_DIRECTION", 5, AP_Motors6DOF, _motor_reverse[4], 1), |
||||
|
||||
// @Param: 6_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("6_DIRECTION", 6, AP_Motors6DOF, _motor_reverse[5], 1), |
||||
|
||||
// @Param: 7_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("7_DIRECTION", 7, AP_Motors6DOF, _motor_reverse[6], 1), |
||||
|
||||
// @Param: 8_DIRECTION
|
||||
// @DisplayName: Motor normal or reverse
|
||||
// @Description: Used to change motor rotation directions without changing wires
|
||||
// @Values: 1:normal,-1:reverse
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("8_DIRECTION", 8, AP_Motors6DOF, _motor_reverse[7], 1), |
||||
|
||||
// @Param: FV_CPLNG_K
|
||||
// @DisplayName: Forward/vertical to pitch decoupling factor
|
||||
// @Description: Used to decouple pitch from forward/vertical motion. 0 to disable, 1.2 normal
|
||||
// @Range: 0.0 1.5
|
||||
// @Increment: 0.1
|
||||
// @User: Standard
|
||||
AP_GROUPINFO("FV_CPLNG_K", 9, AP_Motors6DOF, _forwardVerticalCouplingFactor, 1.0), |
||||
|
||||
AP_GROUPEND |
||||
}; |
||||
|
||||
void AP_Motors6DOF::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) |
||||
{ |
||||
// remove existing motors
|
||||
for (int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
remove_motor(i); |
||||
} |
||||
|
||||
// hard coded config for supported frames
|
||||
switch ((sub_frame_t)frame_class) { |
||||
// Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor Testing Order
|
||||
case SUB_FRAME_BLUEROV1: |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_3, -0.5f, 0.5f, 0, 0.45f, 0, 0, 3); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0.5f, 0.5f, 0, 0.45f, 0, 0, 4); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, -1.0f, 0, 1.0f, 0, 0, 5); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_6, -0.25f, 0, 0, 0, 0, 1.0f, 6); |
||||
break; |
||||
|
||||
case SUB_FRAME_VECTORED_6DOF_90DEG: |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_1, 1.0f, 1.0f, 0, 1.0f, 0, 0, 1); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_3, 1.0f, -1.0f, 0, 1.0f, 0, 0, 3); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 0, 0, 0, 1.0f, 4); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 1.0f, 0, 1.0f, 0, 0, 6); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_7, 0, 0, -1.0f, 0, 1.0f, 0, 7); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, -1.0f, 0, 1.0f, 0, 0, 8); |
||||
break; |
||||
|
||||
case SUB_FRAME_VECTORED_6DOF: |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, -1.0f, 0, -1.0f, 0, 0, 5); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, -1.0f, 0, -1.0f, 0, 0, 6); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_7, 1.0f, 1.0f, 0, -1.0f, 0, 0, 7); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, 1.0f, 0, -1.0f, 0, 0, 8); |
||||
break; |
||||
|
||||
case SUB_FRAME_VECTORED: |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, 0, 0, -1.0f, 0, 0, 5); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 0, 0, -1.0f, 0, 0, 6); |
||||
break; |
||||
|
||||
case SUB_FRAME_CUSTOM: |
||||
// Put your custom motor setup here
|
||||
//break;
|
||||
|
||||
case SUB_FRAME_SIMPLEROV_3: |
||||
case SUB_FRAME_SIMPLEROV_4: |
||||
case SUB_FRAME_SIMPLEROV_5: |
||||
default: |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, 0, -1.0f, 0, 0, 3); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 0, -1.0f, 0, 0, 4); |
||||
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5); |
||||
break; |
||||
} |
||||
} |
||||
|
||||
void AP_Motors6DOF::add_motor_raw_6dof(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, float throttle_fac, float forward_fac, float lat_fac, uint8_t testing_order) |
||||
{ |
||||
//Parent takes care of enabling output and setting up masks
|
||||
add_motor_raw(motor_num, roll_fac, pitch_fac, yaw_fac, testing_order); |
||||
|
||||
//These are additional parameters for an ROV
|
||||
_throttle_factor[motor_num] = throttle_fac; |
||||
_forward_factor[motor_num] = forward_fac; |
||||
_lateral_factor[motor_num] = lat_fac; |
||||
} |
||||
|
||||
// output_min - sends minimum values out to the motors
|
||||
void AP_Motors6DOF::output_min() |
||||
{ |
||||
int8_t i; |
||||
|
||||
// set limits flags
|
||||
limit.roll_pitch = true; |
||||
limit.yaw = true; |
||||
limit.throttle_lower = false; |
||||
limit.throttle_upper = false; |
||||
|
||||
// fill the motor_out[] array for HIL use and send minimum value to each motor
|
||||
// ToDo find a field to store the minimum pwm instead of hard coding 1500
|
||||
hal.rcout->cork(); |
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
rc_write(i, 1500); |
||||
} |
||||
} |
||||
hal.rcout->push(); |
||||
} |
||||
|
||||
int16_t AP_Motors6DOF::calc_thrust_to_pwm(float thrust_in) const |
||||
{ |
||||
return constrain_int16(1500 + thrust_in * 400, _throttle_radio_min, _throttle_radio_max); |
||||
} |
||||
|
||||
void AP_Motors6DOF::output_to_motors() |
||||
{ |
||||
int8_t i; |
||||
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final pwm values sent to the motor
|
||||
|
||||
switch (_spool_mode) { |
||||
case SHUT_DOWN: |
||||
// sends minimum values out to the motors
|
||||
// set motor output based on thrust requests
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
motor_out[i] = 1500; |
||||
} |
||||
} |
||||
break; |
||||
case SPIN_WHEN_ARMED: |
||||
// sends output to motors when armed but not flying
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
motor_out[i] = 1500; |
||||
} |
||||
} |
||||
break; |
||||
case SPOOL_UP: |
||||
case THROTTLE_UNLIMITED: |
||||
case SPOOL_DOWN: |
||||
// set motor output based on thrust requests
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
motor_out[i] = calc_thrust_to_pwm(_thrust_rpyt_out[i]); |
||||
} |
||||
} |
||||
break; |
||||
} |
||||
|
||||
// send output to each motor
|
||||
hal.rcout->cork(); |
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
rc_write(i, motor_out[i]); |
||||
} |
||||
} |
||||
hal.rcout->push(); |
||||
} |
||||
|
||||
// output_armed - sends commands to the motors
|
||||
// includes new scaling stability patch
|
||||
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
||||
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands
|
||||
void AP_Motors6DOF::output_armed_stabilizing() |
||||
{ |
||||
if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED) { |
||||
output_armed_stabilizing_vectored(); |
||||
} else if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED_6DOF) { |
||||
output_armed_stabilizing_vectored_6dof(); |
||||
} else { |
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
||||
float forward_thrust; // forward thrust input value, +/- 1.0
|
||||
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
||||
|
||||
roll_thrust = _roll_in; |
||||
pitch_thrust = _pitch_in; |
||||
yaw_thrust = _yaw_in; |
||||
throttle_thrust = get_throttle_bidirectional(); |
||||
forward_thrust = _forward_in; |
||||
lateral_thrust = _lateral_in; |
||||
|
||||
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
||||
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
||||
|
||||
// initialize limits flags
|
||||
limit.roll_pitch = false; |
||||
limit.yaw = false; |
||||
limit.throttle_lower = false; |
||||
limit.throttle_upper = false; |
||||
|
||||
// sanity check throttle is above zero and below current limited throttle
|
||||
if (throttle_thrust <= -_throttle_thrust_max) { |
||||
throttle_thrust = -_throttle_thrust_max; |
||||
limit.throttle_lower = true; |
||||
} |
||||
if (throttle_thrust >= _throttle_thrust_max) { |
||||
throttle_thrust = _throttle_thrust_max; |
||||
limit.throttle_upper = true; |
||||
} |
||||
|
||||
// calculate roll, pitch and yaw for each motor
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
rpy_out[i] = roll_thrust * _roll_factor[i] + |
||||
pitch_thrust * _pitch_factor[i] + |
||||
yaw_thrust * _yaw_factor[i]; |
||||
|
||||
} |
||||
} |
||||
|
||||
// calculate linear command for each motor
|
||||
// linear factors should be 0.0 or 1.0 for now
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
linear_out[i] = throttle_thrust * _throttle_factor[i] + |
||||
forward_thrust * _forward_factor[i] + |
||||
lateral_thrust * _lateral_factor[i]; |
||||
} |
||||
} |
||||
|
||||
// Calculate final output for each motor
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]),-1.0f,1.0f); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
// output_armed - sends commands to the motors
|
||||
// includes new scaling stability patch
|
||||
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
||||
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands
|
||||
void AP_Motors6DOF::output_armed_stabilizing_vectored() |
||||
{ |
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
||||
float forward_thrust; // forward thrust input value, +/- 1.0
|
||||
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
||||
|
||||
roll_thrust = _roll_in; |
||||
pitch_thrust = _pitch_in; |
||||
yaw_thrust = _yaw_in; |
||||
throttle_thrust = get_throttle_bidirectional(); |
||||
forward_thrust = _forward_in; |
||||
lateral_thrust = _lateral_in; |
||||
|
||||
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
||||
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
||||
|
||||
// initialize limits flags
|
||||
limit.roll_pitch = false; |
||||
limit.yaw = false; |
||||
limit.throttle_lower = false; |
||||
limit.throttle_upper = false; |
||||
|
||||
// sanity check throttle is above zero and below current limited throttle
|
||||
if (throttle_thrust <= -_throttle_thrust_max) { |
||||
throttle_thrust = -_throttle_thrust_max; |
||||
limit.throttle_lower = true; |
||||
} |
||||
|
||||
if (throttle_thrust >= _throttle_thrust_max) { |
||||
throttle_thrust = _throttle_thrust_max; |
||||
limit.throttle_upper = true; |
||||
} |
||||
|
||||
// calculate roll, pitch and yaw for each motor
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
rpy_out[i] = roll_thrust * _roll_factor[i] + |
||||
pitch_thrust * _pitch_factor[i] + |
||||
yaw_thrust * _yaw_factor[i]; |
||||
} |
||||
} |
||||
|
||||
float forward_coupling_limit = 1-_forwardVerticalCouplingFactor*float(fabs(throttle_thrust)); |
||||
if (forward_coupling_limit < 0) { |
||||
forward_coupling_limit = 0; |
||||
} |
||||
int8_t forward_coupling_direction[] = {-1,-1,1,1,0,0,0,0}; |
||||
|
||||
// calculate linear command for each motor
|
||||
// linear factors should be 0.0 or 1.0 for now
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
|
||||
float forward_thrust_limited = forward_thrust; |
||||
|
||||
// The following statements decouple forward/vertical hydrodynamic coupling on
|
||||
// vectored ROVs. This is done by limiting the maximum output of the "rear" vectored
|
||||
// thruster (where "rear" depends on direction of travel).
|
||||
if (!is_zero(forward_thrust_limited)) { |
||||
if ((forward_thrust < 0) == (forward_coupling_direction[i] < 0) && forward_coupling_direction[i] != 0) { |
||||
forward_thrust_limited = constrain_float(forward_thrust, -forward_coupling_limit, forward_coupling_limit); |
||||
} |
||||
} |
||||
|
||||
linear_out[i] = throttle_thrust * _throttle_factor[i] + |
||||
forward_thrust_limited * _forward_factor[i] + |
||||
lateral_thrust * _lateral_factor[i]; |
||||
} |
||||
} |
||||
|
||||
// Calculate final output for each motor
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]), -1.0f, 1.0f); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Band Aid fix for motor normalization issues.
|
||||
// TODO: find a global solution for managing saturation that works for all vehicles
|
||||
void AP_Motors6DOF::output_armed_stabilizing_vectored_6dof() |
||||
{ |
||||
uint8_t i; // general purpose counter
|
||||
float roll_thrust; // roll thrust input value, +/- 1.0
|
||||
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
||||
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
||||
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
||||
float forward_thrust; // forward thrust input value, +/- 1.0
|
||||
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
||||
|
||||
roll_thrust = _roll_in; |
||||
pitch_thrust = _pitch_in; |
||||
yaw_thrust = _yaw_in; |
||||
throttle_thrust = get_throttle_bidirectional(); |
||||
forward_thrust = _forward_in; |
||||
lateral_thrust = _lateral_in; |
||||
|
||||
float rpt_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
||||
float yfl_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
||||
float rpt_max; |
||||
float yfl_max; |
||||
|
||||
// initialize limits flags
|
||||
limit.roll_pitch = false; |
||||
limit.yaw = false; |
||||
limit.throttle_lower = false; |
||||
limit.throttle_upper = false; |
||||
|
||||
// sanity check throttle is above zero and below current limited throttle
|
||||
if (throttle_thrust <= -_throttle_thrust_max) { |
||||
throttle_thrust = -_throttle_thrust_max; |
||||
limit.throttle_lower = true; |
||||
} |
||||
|
||||
if (throttle_thrust >= _throttle_thrust_max) { |
||||
throttle_thrust = _throttle_thrust_max; |
||||
limit.throttle_upper = true; |
||||
} |
||||
|
||||
// calculate roll, pitch and Throttle for each motor (only used by vertical thrusters)
|
||||
rpt_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
rpt_out[i] = roll_thrust * _roll_factor[i] + |
||||
pitch_thrust * _pitch_factor[i] + |
||||
throttle_thrust * _throttle_factor[i]; |
||||
if (fabs(rpt_out[i]) > rpt_max) { |
||||
rpt_max = fabs(rpt_out[i]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// calculate linear/yaw command for each motor (only used for translational thrusters)
|
||||
// linear factors should be 0.0 or 1.0 for now
|
||||
yfl_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
yfl_out[i] = yaw_thrust * _yaw_factor[i] + |
||||
forward_thrust * _forward_factor[i] + |
||||
lateral_thrust * _lateral_factor[i]; |
||||
if (fabs(yfl_out[i]) > yfl_max) { |
||||
yfl_max = fabs(yfl_out[i]); |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Calculate final output for each motor and normalize if necessary
|
||||
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
||||
if (motor_enabled[i]) { |
||||
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpt_out[i]/rpt_max + yfl_out[i]/yfl_max),-1.0f,1.0f); |
||||
} |
||||
} |
||||
} |
@ -0,0 +1,63 @@
@@ -0,0 +1,63 @@
|
||||
/// @file AP_Motors6DOF.h
|
||||
/// @brief Motor control class for ROVs with direct control over 6DOF (or fewer) in movement
|
||||
|
||||
#pragma once |
||||
|
||||
#include <AP_Common/AP_Common.h> |
||||
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
||||
#include <RC_Channel/RC_Channel.h> // RC Channel Library |
||||
#include "AP_MotorsMatrix.h" |
||||
|
||||
/// @class AP_MotorsMatrix
|
||||
class AP_Motors6DOF : public AP_MotorsMatrix { |
||||
public: |
||||
|
||||
AP_Motors6DOF(uint16_t loop_rate, uint16_t speed_hz = AP_MOTORS_SPEED_DEFAULT) : |
||||
AP_MotorsMatrix(loop_rate, speed_hz) { |
||||
AP_Param::setup_object_defaults(this, var_info); |
||||
}; |
||||
|
||||
// Supported frame types
|
||||
typedef enum { |
||||
SUB_FRAME_BLUEROV1, |
||||
SUB_FRAME_VECTORED, |
||||
SUB_FRAME_VECTORED_6DOF, |
||||
SUB_FRAME_VECTORED_6DOF_90DEG, |
||||
SUB_FRAME_SIMPLEROV_3, |
||||
SUB_FRAME_SIMPLEROV_4, |
||||
SUB_FRAME_SIMPLEROV_5, |
||||
SUB_FRAME_CUSTOM |
||||
} sub_frame_t; |
||||
|
||||
// Override parent
|
||||
void setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) override; |
||||
|
||||
// Override parent
|
||||
void output_min() override; |
||||
|
||||
// Map thrust input -1~1 to pwm output 1100~1900
|
||||
int16_t calc_thrust_to_pwm(float thrust_in) const; |
||||
|
||||
// output_to_motors - sends minimum values out to the motors
|
||||
void output_to_motors() override; |
||||
|
||||
// var_info for holding Parameter information
|
||||
static const struct AP_Param::GroupInfo var_info[]; |
||||
|
||||
protected: |
||||
|
||||
//Override MotorsMatrix method
|
||||
void add_motor_raw_6dof(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, float climb_fac, float forward_fac, float lat_fac, uint8_t testing_order); |
||||
|
||||
void output_armed_stabilizing() override; |
||||
void output_armed_stabilizing_vectored(); |
||||
void output_armed_stabilizing_vectored_6dof(); |
||||
|
||||
// Parameters
|
||||
AP_Int8 _motor_reverse[8]; |
||||
AP_Float _forwardVerticalCouplingFactor; |
||||
|
||||
float _throttle_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to throttle (climb/descent)
|
||||
float _forward_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to forward/backward
|
||||
float _lateral_factor[AP_MOTORS_MAX_NUM_MOTORS]; // each motors contribution to lateral (left/right)
|
||||
}; |
Loading…
Reference in new issue