|
|
|
@ -50,7 +50,13 @@ const AP_Param::GroupInfo AC_PrecLand::var_info[] = {
@@ -50,7 +50,13 @@ const AP_Param::GroupInfo AC_PrecLand::var_info[] = {
|
|
|
|
|
// @Units: Centimeters
|
|
|
|
|
AP_GROUPINFO("LAND_OFS_Y", 4, AC_PrecLand, _land_ofs_cm_y, 0), |
|
|
|
|
|
|
|
|
|
// 5 RESERVED for EKF_TYPE
|
|
|
|
|
// @Param: EST_TYPE
|
|
|
|
|
// @DisplayName: Precision Land Estimator Type
|
|
|
|
|
// @Description: Specifies the estimation method used.
|
|
|
|
|
// @Values: 0:RAW_MEASUREMENTS, 1:TWO_STATE_KF_PER_AXIS
|
|
|
|
|
// @User: Advanced
|
|
|
|
|
AP_GROUPINFO("EST_TYPE", 5, AC_PrecLand, _estimator_type, 1), |
|
|
|
|
|
|
|
|
|
// 6 RESERVED for ACC_NSE
|
|
|
|
|
|
|
|
|
|
AP_GROUPEND |
|
|
|
@ -64,6 +70,7 @@ AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav) :
@@ -64,6 +70,7 @@ AC_PrecLand::AC_PrecLand(const AP_AHRS& ahrs, const AP_InertialNav& inav) :
|
|
|
|
|
_ahrs(ahrs), |
|
|
|
|
_inav(inav), |
|
|
|
|
_last_update_ms(0), |
|
|
|
|
_target_acquired(false), |
|
|
|
|
_last_backend_los_meas_ms(0), |
|
|
|
|
_backend(nullptr) |
|
|
|
|
{ |
|
|
|
@ -122,124 +129,51 @@ void AC_PrecLand::init()
@@ -122,124 +129,51 @@ void AC_PrecLand::init()
|
|
|
|
|
// update - give chance to driver to get updates from sensor
|
|
|
|
|
void AC_PrecLand::update(float rangefinder_alt_cm, bool rangefinder_alt_valid) |
|
|
|
|
{ |
|
|
|
|
_attitude_history.push_back(_ahrs.get_rotation_body_to_ned()); |
|
|
|
|
// Collect inertial data and append it to the buffer
|
|
|
|
|
struct inertial_data_frame_s inertial_data_newest; |
|
|
|
|
_ahrs.getCorrectedDeltaVelocityNED(inertial_data_newest.correctedVehicleDeltaVelocityNED, inertial_data_newest.dt); |
|
|
|
|
inertial_data_newest.Tbn = _ahrs.get_rotation_body_to_ned(); |
|
|
|
|
inertial_data_newest.inertialNavVelocity = _inav.get_velocity()*0.01f; |
|
|
|
|
inertial_data_newest.inertialNavVelocityValid = _inav.get_filter_status().flags.horiz_vel; |
|
|
|
|
_inertial_history.push_back(inertial_data_newest); |
|
|
|
|
|
|
|
|
|
// run backend update
|
|
|
|
|
if (_backend != nullptr && _enabled) { |
|
|
|
|
// read from sensor
|
|
|
|
|
_backend->update(); |
|
|
|
|
|
|
|
|
|
Vector3f vehicleVelocityNED = _inav.get_velocity()*0.01f; |
|
|
|
|
vehicleVelocityNED.z = -vehicleVelocityNED.z; |
|
|
|
|
|
|
|
|
|
if (target_acquired()) { |
|
|
|
|
// EKF prediction step
|
|
|
|
|
float dt; |
|
|
|
|
Vector3f targetDelVel; |
|
|
|
|
_ahrs.getCorrectedDeltaVelocityNED(targetDelVel, dt); |
|
|
|
|
targetDelVel = -targetDelVel; |
|
|
|
|
|
|
|
|
|
_ekf_x.predict(dt, targetDelVel.x, 0.5f*dt); |
|
|
|
|
_ekf_y.predict(dt, targetDelVel.y, 0.5f*dt); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) { |
|
|
|
|
// we have a new, unique los measurement
|
|
|
|
|
_last_backend_los_meas_ms = _backend->los_meas_time_ms(); |
|
|
|
|
|
|
|
|
|
Vector3f target_vec_unit_body; |
|
|
|
|
_backend->get_los_body(target_vec_unit_body); |
|
|
|
|
|
|
|
|
|
// Apply sensor yaw alignment rotation
|
|
|
|
|
float sin_yaw_align = sinf(radians(_yaw_align*0.01f)); |
|
|
|
|
float cos_yaw_align = cosf(radians(_yaw_align*0.01f)); |
|
|
|
|
Matrix3f Rz = Matrix3f( |
|
|
|
|
cos_yaw_align, -sin_yaw_align, 0, |
|
|
|
|
sin_yaw_align, cos_yaw_align, 0, |
|
|
|
|
0, 0, 1 |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
Vector3f target_vec_unit_ned = _attitude_history.front() * Rz * target_vec_unit_body; |
|
|
|
|
|
|
|
|
|
bool target_vec_valid = target_vec_unit_ned.z > 0.0f; |
|
|
|
|
bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_cm > 0.0f) || (_backend->distance_to_target() > 0.0f); |
|
|
|
|
|
|
|
|
|
if (target_vec_valid && alt_valid) { |
|
|
|
|
float alt; |
|
|
|
|
if (_backend->distance_to_target() > 0.0f) { |
|
|
|
|
alt = _backend->distance_to_target(); |
|
|
|
|
} else { |
|
|
|
|
alt = MAX(rangefinder_alt_cm*0.01f, 0.0f); |
|
|
|
|
} |
|
|
|
|
float dist = alt/target_vec_unit_ned.z; |
|
|
|
|
Vector3f targetPosRelMeasNED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt); |
|
|
|
|
|
|
|
|
|
float xy_pos_var = sq(targetPosRelMeasNED.z*(0.01f + 0.01f*_ahrs.get_gyro().length()) + 0.02f); |
|
|
|
|
if (!target_acquired()) { |
|
|
|
|
// reset filter state
|
|
|
|
|
if (_inav.get_filter_status().flags.horiz_pos_rel) { |
|
|
|
|
_ekf_x.init(targetPosRelMeasNED.x, xy_pos_var, -vehicleVelocityNED.x, sq(2.0f)); |
|
|
|
|
_ekf_y.init(targetPosRelMeasNED.y, xy_pos_var, -vehicleVelocityNED.y, sq(2.0f)); |
|
|
|
|
} else { |
|
|
|
|
_ekf_x.init(targetPosRelMeasNED.x, xy_pos_var, 0.0f, sq(10.0f)); |
|
|
|
|
_ekf_y.init(targetPosRelMeasNED.y, xy_pos_var, 0.0f, sq(10.0f)); |
|
|
|
|
} |
|
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
|
|
|
} else { |
|
|
|
|
float NIS_x = _ekf_x.getPosNIS(targetPosRelMeasNED.x, xy_pos_var); |
|
|
|
|
float NIS_y = _ekf_y.getPosNIS(targetPosRelMeasNED.y, xy_pos_var); |
|
|
|
|
if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) { |
|
|
|
|
_outlier_reject_count = 0; |
|
|
|
|
_ekf_x.fusePos(targetPosRelMeasNED.x, xy_pos_var); |
|
|
|
|
_ekf_y.fusePos(targetPosRelMeasNED.y, xy_pos_var); |
|
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
|
|
|
} else { |
|
|
|
|
_outlier_reject_count++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
run_estimator(rangefinder_alt_cm*0.01f, rangefinder_alt_valid); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool AC_PrecLand::target_acquired() const |
|
|
|
|
bool AC_PrecLand::target_acquired() |
|
|
|
|
{ |
|
|
|
|
return (AP_HAL::millis()-_last_update_ms) < 2000; |
|
|
|
|
_target_acquired = _target_acquired && (AP_HAL::millis()-_last_update_ms) < 2000; |
|
|
|
|
return _target_acquired; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool AC_PrecLand::get_target_position_cm(Vector2f& ret) const |
|
|
|
|
bool AC_PrecLand::get_target_position_cm(Vector2f& ret) |
|
|
|
|
{ |
|
|
|
|
if (!target_acquired()) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Vector3f land_ofs_ned_cm = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0); |
|
|
|
|
|
|
|
|
|
ret.x = _ekf_x.getPos()*100.0f + _inav.get_position().x + land_ofs_ned_cm.x; |
|
|
|
|
ret.y = _ekf_y.getPos()*100.0f + _inav.get_position().y + land_ofs_ned_cm.y; |
|
|
|
|
ret.x = _target_pos_rel_out_NE.x*100.0f + _inav.get_position().x; |
|
|
|
|
ret.y = _target_pos_rel_out_NE.y*100.0f + _inav.get_position().y; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret) const |
|
|
|
|
bool AC_PrecLand::get_target_position_relative_cm(Vector2f& ret) |
|
|
|
|
{ |
|
|
|
|
if (!target_acquired()) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
Vector3f land_ofs_ned_cm = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0); |
|
|
|
|
|
|
|
|
|
ret.x = _ekf_x.getPos()*100.0f + land_ofs_ned_cm.x; |
|
|
|
|
ret.y = _ekf_y.getPos()*100.0f + land_ofs_ned_cm.y; |
|
|
|
|
ret = _target_pos_rel_out_NE*100.0f; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret) const |
|
|
|
|
bool AC_PrecLand::get_target_velocity_relative_cms(Vector2f& ret) |
|
|
|
|
{ |
|
|
|
|
if (!target_acquired()) { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
ret.x = _ekf_x.getVel()*100.0f; |
|
|
|
|
ret.y = _ekf_y.getVel()*100.0f; |
|
|
|
|
ret = _target_vel_rel_out_NE*100.0f; |
|
|
|
|
return true; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
@ -251,3 +185,172 @@ void AC_PrecLand::handle_msg(mavlink_message_t* msg)
@@ -251,3 +185,172 @@ void AC_PrecLand::handle_msg(mavlink_message_t* msg)
|
|
|
|
|
_backend->handle_msg(msg); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Private methods
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
void AC_PrecLand::run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid) |
|
|
|
|
{ |
|
|
|
|
const struct inertial_data_frame_s& inertial_data_delayed = _inertial_history.front(); |
|
|
|
|
|
|
|
|
|
switch (_estimator_type) { |
|
|
|
|
case ESTIMATOR_TYPE_RAW_MEASUREMENTS: { |
|
|
|
|
// Return if there's any invalid velocity data
|
|
|
|
|
for (uint8_t i=0; i<_inertial_history.size(); i++) { |
|
|
|
|
const struct inertial_data_frame_s& inertial_data = _inertial_history.peek(i); |
|
|
|
|
if (!inertial_data.inertialNavVelocityValid) { |
|
|
|
|
_target_acquired = false; |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Predict
|
|
|
|
|
if (target_acquired()) { |
|
|
|
|
_target_pos_rel_est_NE.x -= inertial_data_delayed.inertialNavVelocity.x * inertial_data_delayed.dt; |
|
|
|
|
_target_pos_rel_est_NE.y -= inertial_data_delayed.inertialNavVelocity.y * inertial_data_delayed.dt; |
|
|
|
|
_target_vel_rel_est_NE.x = -inertial_data_delayed.inertialNavVelocity.x; |
|
|
|
|
_target_vel_rel_est_NE.y = -inertial_data_delayed.inertialNavVelocity.y; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Update if a new LOS measurement is available
|
|
|
|
|
Vector3f target_vec_unit_body; |
|
|
|
|
if (retrieve_los_meas(target_vec_unit_body)) { |
|
|
|
|
Vector3f target_vec_unit_ned = inertial_data_delayed.Tbn * target_vec_unit_body; |
|
|
|
|
bool target_vec_valid = target_vec_unit_ned.z > 0.0f; |
|
|
|
|
bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_m > 0.0f) || (_backend->distance_to_target() > 0.0f); |
|
|
|
|
if (target_vec_valid && alt_valid) { |
|
|
|
|
float alt; |
|
|
|
|
if (_backend->distance_to_target() > 0.0f) { |
|
|
|
|
alt = _backend->distance_to_target(); |
|
|
|
|
} else { |
|
|
|
|
alt = MAX(rangefinder_alt_m, 0.0f); |
|
|
|
|
} |
|
|
|
|
float dist = alt/target_vec_unit_ned.z; |
|
|
|
|
_target_pos_rel_meas_NED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt); |
|
|
|
|
|
|
|
|
|
_target_pos_rel_est_NE.x = _target_pos_rel_meas_NED.x; |
|
|
|
|
_target_pos_rel_est_NE.y = _target_pos_rel_meas_NED.y; |
|
|
|
|
_target_vel_rel_est_NE.x = -inertial_data_delayed.inertialNavVelocity.x; |
|
|
|
|
_target_vel_rel_est_NE.y = -inertial_data_delayed.inertialNavVelocity.y; |
|
|
|
|
|
|
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
|
|
|
_target_acquired = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Output prediction
|
|
|
|
|
if (target_acquired()) { |
|
|
|
|
run_output_prediction(); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
case ESTIMATOR_TYPE_TWO_STATE_KF_PER_AXIS: { |
|
|
|
|
// Predict
|
|
|
|
|
if (target_acquired()) { |
|
|
|
|
const float& dt = inertial_data_delayed.dt; |
|
|
|
|
const Vector3f& vehicleDelVel = inertial_data_delayed.correctedVehicleDeltaVelocityNED; |
|
|
|
|
|
|
|
|
|
_ekf_x.predict(dt, -vehicleDelVel.x, 0.5f*dt); |
|
|
|
|
_ekf_y.predict(dt, -vehicleDelVel.y, 0.5f*dt); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Update if a new LOS measurement is available
|
|
|
|
|
Vector3f target_vec_unit_body; |
|
|
|
|
if (retrieve_los_meas(target_vec_unit_body)) { |
|
|
|
|
Vector3f target_vec_unit_ned = inertial_data_delayed.Tbn * target_vec_unit_body; |
|
|
|
|
bool target_vec_valid = target_vec_unit_ned.z > 0.0f; |
|
|
|
|
bool alt_valid = (rangefinder_alt_valid && rangefinder_alt_m > 0.0f) || (_backend->distance_to_target() > 0.0f); |
|
|
|
|
if (target_vec_valid && alt_valid) { |
|
|
|
|
float alt; |
|
|
|
|
if (_backend->distance_to_target() > 0.0f) { |
|
|
|
|
alt = _backend->distance_to_target(); |
|
|
|
|
} else { |
|
|
|
|
alt = MAX(rangefinder_alt_m, 0.0f); |
|
|
|
|
} |
|
|
|
|
float dist = alt/target_vec_unit_ned.z; |
|
|
|
|
_target_pos_rel_meas_NED = Vector3f(target_vec_unit_ned.x*dist, target_vec_unit_ned.y*dist, alt); |
|
|
|
|
|
|
|
|
|
float xy_pos_var = sq(_target_pos_rel_meas_NED.z*(0.01f + 0.01f*_ahrs.get_gyro().length()) + 0.02f); |
|
|
|
|
if (!target_acquired()) { |
|
|
|
|
// reset filter state
|
|
|
|
|
if (inertial_data_delayed.inertialNavVelocityValid) { |
|
|
|
|
_ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, -inertial_data_delayed.inertialNavVelocity.x, sq(2.0f)); |
|
|
|
|
_ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, -inertial_data_delayed.inertialNavVelocity.y, sq(2.0f)); |
|
|
|
|
} else { |
|
|
|
|
_ekf_x.init(_target_pos_rel_meas_NED.x, xy_pos_var, 0.0f, sq(10.0f)); |
|
|
|
|
_ekf_y.init(_target_pos_rel_meas_NED.y, xy_pos_var, 0.0f, sq(10.0f)); |
|
|
|
|
} |
|
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
|
|
|
_target_acquired = true; |
|
|
|
|
} else { |
|
|
|
|
float NIS_x = _ekf_x.getPosNIS(_target_pos_rel_meas_NED.x, xy_pos_var); |
|
|
|
|
float NIS_y = _ekf_y.getPosNIS(_target_pos_rel_meas_NED.y, xy_pos_var); |
|
|
|
|
if (MAX(NIS_x, NIS_y) < 3.0f || _outlier_reject_count >= 3) { |
|
|
|
|
_outlier_reject_count = 0; |
|
|
|
|
_ekf_x.fusePos(_target_pos_rel_meas_NED.x, xy_pos_var); |
|
|
|
|
_ekf_y.fusePos(_target_pos_rel_meas_NED.y, xy_pos_var); |
|
|
|
|
_last_update_ms = AP_HAL::millis(); |
|
|
|
|
_target_acquired = true; |
|
|
|
|
} else { |
|
|
|
|
_outlier_reject_count++; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Output prediction
|
|
|
|
|
if (target_acquired()) { |
|
|
|
|
_target_pos_rel_est_NE.x = _ekf_x.getPos(); |
|
|
|
|
_target_pos_rel_est_NE.y = _ekf_y.getPos(); |
|
|
|
|
_target_vel_rel_est_NE.x = _ekf_x.getVel(); |
|
|
|
|
_target_vel_rel_est_NE.y = _ekf_y.getVel(); |
|
|
|
|
|
|
|
|
|
run_output_prediction(); |
|
|
|
|
} |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
bool AC_PrecLand::retrieve_los_meas(Vector3f& target_vec_unit_body) |
|
|
|
|
{ |
|
|
|
|
if (_backend->have_los_meas() && _backend->los_meas_time_ms() != _last_backend_los_meas_ms) { |
|
|
|
|
_last_backend_los_meas_ms = _backend->los_meas_time_ms(); |
|
|
|
|
_backend->get_los_body(target_vec_unit_body); |
|
|
|
|
|
|
|
|
|
// Apply sensor yaw alignment rotation
|
|
|
|
|
float sin_yaw_align = sinf(radians(_yaw_align*0.01f)); |
|
|
|
|
float cos_yaw_align = cosf(radians(_yaw_align*0.01f)); |
|
|
|
|
Matrix3f Rz = Matrix3f( |
|
|
|
|
cos_yaw_align, -sin_yaw_align, 0, |
|
|
|
|
sin_yaw_align, cos_yaw_align, 0, |
|
|
|
|
0, 0, 1 |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
target_vec_unit_body = Rz*target_vec_unit_body; |
|
|
|
|
return true; |
|
|
|
|
} else { |
|
|
|
|
return false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void AC_PrecLand::run_output_prediction() |
|
|
|
|
{ |
|
|
|
|
_target_pos_rel_out_NE = _target_pos_rel_est_NE; |
|
|
|
|
_target_vel_rel_out_NE = _target_vel_rel_est_NE; |
|
|
|
|
|
|
|
|
|
// Predict forward from delayed time horizon
|
|
|
|
|
for (uint8_t i=1; i<_inertial_history.size(); i++) { |
|
|
|
|
const struct inertial_data_frame_s& inertial_data = _inertial_history.peek(i); |
|
|
|
|
_target_vel_rel_out_NE.x -= inertial_data.correctedVehicleDeltaVelocityNED.x; |
|
|
|
|
_target_vel_rel_out_NE.y -= inertial_data.correctedVehicleDeltaVelocityNED.y; |
|
|
|
|
_target_pos_rel_out_NE.x += _target_vel_rel_out_NE.x * inertial_data.dt; |
|
|
|
|
_target_pos_rel_out_NE.y += _target_vel_rel_out_NE.y * inertial_data.dt; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Apply offset
|
|
|
|
|
Vector3f land_ofs_ned_m = _ahrs.get_rotation_body_to_ned() * Vector3f(_land_ofs_cm_x,_land_ofs_cm_y,0) * 0.01f; |
|
|
|
|
_target_pos_rel_out_NE.x += land_ofs_ned_m.x; |
|
|
|
|
_target_pos_rel_out_NE.y += land_ofs_ned_m.y; |
|
|
|
|
} |
|
|
|
|