|
|
|
@ -49,10 +49,10 @@ extern const AP_HAL::HAL& hal;
@@ -49,10 +49,10 @@ extern const AP_HAL::HAL& hal;
|
|
|
|
|
// important as frequency resolution. Referred to as [Heinz] throughout the code.
|
|
|
|
|
|
|
|
|
|
// initialize the FFT state machine
|
|
|
|
|
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate) |
|
|
|
|
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) |
|
|
|
|
{ |
|
|
|
|
DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate); |
|
|
|
|
if (fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr) { |
|
|
|
|
DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate, harmonics); |
|
|
|
|
if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) { |
|
|
|
|
delete fft; |
|
|
|
|
return nullptr; |
|
|
|
|
} |
|
|
|
@ -60,28 +60,28 @@ AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample
@@ -60,28 +60,28 @@ AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// start an FFT analysis
|
|
|
|
|
void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) |
|
|
|
|
void DSP::fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) |
|
|
|
|
{ |
|
|
|
|
step_hanning((FFTWindowStateARM*)state, samples, buffer_index, buffer_size); |
|
|
|
|
step_hanning((FFTWindowStateARM*)state, samples, advance); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// perform remaining steps of an FFT analysis
|
|
|
|
|
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) |
|
|
|
|
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) |
|
|
|
|
{ |
|
|
|
|
FFTWindowStateARM* fft = (FFTWindowStateARM*)state; |
|
|
|
|
step_arm_cfft_f32(fft); |
|
|
|
|
step_bitreversal(fft); |
|
|
|
|
step_stage_rfft_f32(fft); |
|
|
|
|
step_arm_cmplx_mag_f32(fft, start_bin, end_bin, harmonics, noise_att_cutoff); |
|
|
|
|
step_arm_cmplx_mag_f32(fft, start_bin, end_bin, noise_att_cutoff); |
|
|
|
|
return step_calc_frequencies_f32(fft, start_bin, end_bin); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// create an instance of the FFT state machine
|
|
|
|
|
DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate) |
|
|
|
|
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate) |
|
|
|
|
DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) |
|
|
|
|
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, harmonics) |
|
|
|
|
{ |
|
|
|
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr) { |
|
|
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", |
|
|
|
|
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { |
|
|
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", |
|
|
|
|
unsigned(sizeof(float) * (window_size * 3 + 2)), unsigned(window_size)); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
@ -115,9 +115,7 @@ DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_
@@ -115,9 +115,7 @@ DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_
|
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
DSP::FFTWindowStateARM::~FFTWindowStateARM() |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
DSP::FFTWindowStateARM::~FFTWindowStateARM() {} |
|
|
|
|
|
|
|
|
|
extern "C" { |
|
|
|
|
void stage_rfft_f32(arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut); |
|
|
|
@ -128,17 +126,15 @@ extern "C" {
@@ -128,17 +126,15 @@ extern "C" {
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// step 1: filter the incoming samples through a Hanning window
|
|
|
|
|
void DSP::step_hanning(FFTWindowStateARM* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size) |
|
|
|
|
void DSP::step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance) |
|
|
|
|
{ |
|
|
|
|
TIMER_START(_hanning_timer); |
|
|
|
|
// 5us
|
|
|
|
|
// apply hanning window to gyro samples and store result in _freq_bins
|
|
|
|
|
// hanning starts and ends with 0, could be skipped for minor speed improvement
|
|
|
|
|
const uint16_t ring_buf_idx = MIN(buffer_size - buffer_index, fft->_window_size); |
|
|
|
|
arm_mult_f32(&samples[buffer_index], &fft->_hanning_window[0], &fft->_freq_bins[0], ring_buf_idx); |
|
|
|
|
if (buffer_index > 0) { |
|
|
|
|
arm_mult_f32(&samples[0], &fft->_hanning_window[ring_buf_idx], &fft->_freq_bins[ring_buf_idx], fft->_window_size - ring_buf_idx); |
|
|
|
|
} |
|
|
|
|
samples.peek(&fft->_freq_bins[0], fft->_window_size); // the caller ensures we get a full buffer of samples
|
|
|
|
|
samples.advance(advance); |
|
|
|
|
arm_mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size); |
|
|
|
|
|
|
|
|
|
TIMER_END(_hanning_timer); |
|
|
|
|
} |
|
|
|
@ -212,7 +208,7 @@ void DSP::step_stage_rfft_f32(FFTWindowStateARM* fft)
@@ -212,7 +208,7 @@ void DSP::step_stage_rfft_f32(FFTWindowStateARM* fft)
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// step 5: find the magnitudes of the complex data
|
|
|
|
|
void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) |
|
|
|
|
void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) |
|
|
|
|
{ |
|
|
|
|
TIMER_START(_arm_cmplx_mag_f32_timer); |
|
|
|
|
// 8us (BF)
|
|
|
|
@ -231,7 +227,7 @@ void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uin
@@ -231,7 +227,7 @@ void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uin
|
|
|
|
|
fft->_rfft_data[fft->_window_size] = fft->_rfft_data[1]; // Nyquist for the interpolator
|
|
|
|
|
fft->_rfft_data[fft->_window_size + 1] = 0; |
|
|
|
|
|
|
|
|
|
step_cmplx_mag(fft, start_bin, end_bin, harmonics, noise_att_cutoff); |
|
|
|
|
step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff); |
|
|
|
|
|
|
|
|
|
TIMER_END(_arm_cmplx_mag_f32_timer); |
|
|
|
|
} |
|
|
|
@ -250,12 +246,12 @@ uint16_t DSP::step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_b
@@ -250,12 +246,12 @@ uint16_t DSP::step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_b
|
|
|
|
|
_output_count++; |
|
|
|
|
// outputs at approx 1hz
|
|
|
|
|
if (_output_count % 400 == 0) { |
|
|
|
|
gcs().send_text(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", |
|
|
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", |
|
|
|
|
_hanning_timer._timer_avg, _arm_cfft_f32_timer._timer_avg, _bitreversal_timer._timer_avg, _stage_rfft_f32_timer._timer_avg, _arm_cmplx_mag_f32_timer._timer_avg, _step_calc_frequencies._timer_avg); |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
return fft->_max_energy_bin; |
|
|
|
|
return fft->_peak_data[CENTER]._bin; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
static const float PI_N = M_PI / 32.0f; |
|
|
|
|