diff --git a/libraries/AP_HAL_ChibiOS/DSP.cpp b/libraries/AP_HAL_ChibiOS/DSP.cpp index c2980b4da4..e39b612bcc 100644 --- a/libraries/AP_HAL_ChibiOS/DSP.cpp +++ b/libraries/AP_HAL_ChibiOS/DSP.cpp @@ -49,10 +49,10 @@ extern const AP_HAL::HAL& hal; // important as frequency resolution. Referred to as [Heinz] throughout the code. // initialize the FFT state machine -AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate) +AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) { - DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate); - if (fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr) { + DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate, harmonics); + if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) { delete fft; return nullptr; } @@ -60,28 +60,28 @@ AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample } // start an FFT analysis -void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) +void DSP::fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) { - step_hanning((FFTWindowStateARM*)state, samples, buffer_index, buffer_size); + step_hanning((FFTWindowStateARM*)state, samples, advance); } // perform remaining steps of an FFT analysis -uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) +uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) { FFTWindowStateARM* fft = (FFTWindowStateARM*)state; step_arm_cfft_f32(fft); step_bitreversal(fft); step_stage_rfft_f32(fft); - step_arm_cmplx_mag_f32(fft, start_bin, end_bin, harmonics, noise_att_cutoff); + step_arm_cmplx_mag_f32(fft, start_bin, end_bin, noise_att_cutoff); return step_calc_frequencies_f32(fft, start_bin, end_bin); } // create an instance of the FFT state machine -DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate) - : AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate) +DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) + : AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, harmonics) { - if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr) { - gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", + if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) { + GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", unsigned(sizeof(float) * (window_size * 3 + 2)), unsigned(window_size)); return; } @@ -115,9 +115,7 @@ DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_ } } -DSP::FFTWindowStateARM::~FFTWindowStateARM() -{ -} +DSP::FFTWindowStateARM::~FFTWindowStateARM() {} extern "C" { void stage_rfft_f32(arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut); @@ -128,17 +126,15 @@ extern "C" { } // step 1: filter the incoming samples through a Hanning window -void DSP::step_hanning(FFTWindowStateARM* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size) +void DSP::step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance) { TIMER_START(_hanning_timer); // 5us // apply hanning window to gyro samples and store result in _freq_bins // hanning starts and ends with 0, could be skipped for minor speed improvement - const uint16_t ring_buf_idx = MIN(buffer_size - buffer_index, fft->_window_size); - arm_mult_f32(&samples[buffer_index], &fft->_hanning_window[0], &fft->_freq_bins[0], ring_buf_idx); - if (buffer_index > 0) { - arm_mult_f32(&samples[0], &fft->_hanning_window[ring_buf_idx], &fft->_freq_bins[ring_buf_idx], fft->_window_size - ring_buf_idx); - } + samples.peek(&fft->_freq_bins[0], fft->_window_size); // the caller ensures we get a full buffer of samples + samples.advance(advance); + arm_mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size); TIMER_END(_hanning_timer); } @@ -212,7 +208,7 @@ void DSP::step_stage_rfft_f32(FFTWindowStateARM* fft) } // step 5: find the magnitudes of the complex data -void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) +void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) { TIMER_START(_arm_cmplx_mag_f32_timer); // 8us (BF) @@ -231,7 +227,7 @@ void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uin fft->_rfft_data[fft->_window_size] = fft->_rfft_data[1]; // Nyquist for the interpolator fft->_rfft_data[fft->_window_size + 1] = 0; - step_cmplx_mag(fft, start_bin, end_bin, harmonics, noise_att_cutoff); + step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff); TIMER_END(_arm_cmplx_mag_f32_timer); } @@ -250,12 +246,12 @@ uint16_t DSP::step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_b _output_count++; // outputs at approx 1hz if (_output_count % 400 == 0) { - gcs().send_text(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", + GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", _hanning_timer._timer_avg, _arm_cfft_f32_timer._timer_avg, _bitreversal_timer._timer_avg, _stage_rfft_f32_timer._timer_avg, _arm_cmplx_mag_f32_timer._timer_avg, _step_calc_frequencies._timer_avg); } #endif - return fft->_max_energy_bin; + return fft->_peak_data[CENTER]._bin; } static const float PI_N = M_PI / 32.0f; diff --git a/libraries/AP_HAL_ChibiOS/DSP.h b/libraries/AP_HAL_ChibiOS/DSP.h index 7e3791e4d4..0720fe4f33 100644 --- a/libraries/AP_HAL_ChibiOS/DSP.h +++ b/libraries/AP_HAL_ChibiOS/DSP.h @@ -29,19 +29,18 @@ class ChibiOS::DSP : public AP_HAL::DSP { public: // initialise an FFT instance - virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate) override; - // start an FFT analysis - virtual void fft_start(FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) override; + virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) override; + // start an FFT analysis with an ObjectBuffer + virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) override; // perform remaining steps of an FFT analysis - virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) override; + virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) override; // STM32-based FFT state class FFTWindowStateARM : public AP_HAL::DSP::FFTWindowState { friend class ChibiOS::DSP; - - protected: - FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate); - ~FFTWindowStateARM(); + public: + FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics); + virtual ~FFTWindowStateARM(); private: // underlying CMSIS data structure for FFT analysis @@ -57,14 +56,19 @@ protected: void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override { arm_scale_f32(vin, scale, vout, len); } + float vector_mean_float(const float* vin, uint16_t len) const override { + float mean_value; + arm_mean_f32(vin, len, &mean_value); + return mean_value; + } private: // following are the six independent steps for calculating an FFT - void step_hanning(FFTWindowStateARM* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size); + void step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance); void step_arm_cfft_f32(FFTWindowStateARM* fft); void step_bitreversal(FFTWindowStateARM* fft); void step_stage_rfft_f32(FFTWindowStateARM* fft); - void step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff); + void step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff); uint16_t step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin); // candan's frequency interpolator float calculate_candans_estimator(const FFTWindowStateARM* fft, uint16_t k) const;