Browse Source

AP_HAL_ChibiOS: add harmonics to DSP

add vector_mean_float() to DSP
allow fft_start() to use ObjectBuffer<float> for lock-free access
c415-sdk
Andy Piper 5 years ago committed by Andrew Tridgell
parent
commit
33c1523905
  1. 44
      libraries/AP_HAL_ChibiOS/DSP.cpp
  2. 24
      libraries/AP_HAL_ChibiOS/DSP.h

44
libraries/AP_HAL_ChibiOS/DSP.cpp

@ -49,10 +49,10 @@ extern const AP_HAL::HAL& hal;
// important as frequency resolution. Referred to as [Heinz] throughout the code. // important as frequency resolution. Referred to as [Heinz] throughout the code.
// initialize the FFT state machine // initialize the FFT state machine
AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate) AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics)
{ {
DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate); DSP::FFTWindowStateARM* fft = new DSP::FFTWindowStateARM(window_size, sample_rate, harmonics);
if (fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr) { if (fft == nullptr || fft->_hanning_window == nullptr || fft->_rfft_data == nullptr || fft->_freq_bins == nullptr || fft->_derivative_freq_bins == nullptr) {
delete fft; delete fft;
return nullptr; return nullptr;
} }
@ -60,28 +60,28 @@ AP_HAL::DSP::FFTWindowState* DSP::fft_init(uint16_t window_size, uint16_t sample
} }
// start an FFT analysis // start an FFT analysis
void DSP::fft_start(AP_HAL::DSP::FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) void DSP::fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance)
{ {
step_hanning((FFTWindowStateARM*)state, samples, buffer_index, buffer_size); step_hanning((FFTWindowStateARM*)state, samples, advance);
} }
// perform remaining steps of an FFT analysis // perform remaining steps of an FFT analysis
uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) uint16_t DSP::fft_analyse(AP_HAL::DSP::FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff)
{ {
FFTWindowStateARM* fft = (FFTWindowStateARM*)state; FFTWindowStateARM* fft = (FFTWindowStateARM*)state;
step_arm_cfft_f32(fft); step_arm_cfft_f32(fft);
step_bitreversal(fft); step_bitreversal(fft);
step_stage_rfft_f32(fft); step_stage_rfft_f32(fft);
step_arm_cmplx_mag_f32(fft, start_bin, end_bin, harmonics, noise_att_cutoff); step_arm_cmplx_mag_f32(fft, start_bin, end_bin, noise_att_cutoff);
return step_calc_frequencies_f32(fft, start_bin, end_bin); return step_calc_frequencies_f32(fft, start_bin, end_bin);
} }
// create an instance of the FFT state machine // create an instance of the FFT state machine
DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate) DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics)
: AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate) : AP_HAL::DSP::FFTWindowState::FFTWindowState(window_size, sample_rate, harmonics)
{ {
if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr) { if (_freq_bins == nullptr || _hanning_window == nullptr || _rfft_data == nullptr || _derivative_freq_bins == nullptr) {
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP", GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "Failed to allocate %u bytes for window %u for DSP",
unsigned(sizeof(float) * (window_size * 3 + 2)), unsigned(window_size)); unsigned(sizeof(float) * (window_size * 3 + 2)), unsigned(window_size));
return; return;
} }
@ -115,9 +115,7 @@ DSP::FFTWindowStateARM::FFTWindowStateARM(uint16_t window_size, uint16_t sample_
} }
} }
DSP::FFTWindowStateARM::~FFTWindowStateARM() DSP::FFTWindowStateARM::~FFTWindowStateARM() {}
{
}
extern "C" { extern "C" {
void stage_rfft_f32(arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut); void stage_rfft_f32(arm_rfft_fast_instance_f32 *S, float32_t *p, float32_t *pOut);
@ -128,17 +126,15 @@ extern "C" {
} }
// step 1: filter the incoming samples through a Hanning window // step 1: filter the incoming samples through a Hanning window
void DSP::step_hanning(FFTWindowStateARM* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size) void DSP::step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance)
{ {
TIMER_START(_hanning_timer); TIMER_START(_hanning_timer);
// 5us // 5us
// apply hanning window to gyro samples and store result in _freq_bins // apply hanning window to gyro samples and store result in _freq_bins
// hanning starts and ends with 0, could be skipped for minor speed improvement // hanning starts and ends with 0, could be skipped for minor speed improvement
const uint16_t ring_buf_idx = MIN(buffer_size - buffer_index, fft->_window_size); samples.peek(&fft->_freq_bins[0], fft->_window_size); // the caller ensures we get a full buffer of samples
arm_mult_f32(&samples[buffer_index], &fft->_hanning_window[0], &fft->_freq_bins[0], ring_buf_idx); samples.advance(advance);
if (buffer_index > 0) { arm_mult_f32(&fft->_freq_bins[0], &fft->_hanning_window[0], &fft->_freq_bins[0], fft->_window_size);
arm_mult_f32(&samples[0], &fft->_hanning_window[ring_buf_idx], &fft->_freq_bins[ring_buf_idx], fft->_window_size - ring_buf_idx);
}
TIMER_END(_hanning_timer); TIMER_END(_hanning_timer);
} }
@ -212,7 +208,7 @@ void DSP::step_stage_rfft_f32(FFTWindowStateARM* fft)
} }
// step 5: find the magnitudes of the complex data // step 5: find the magnitudes of the complex data
void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff)
{ {
TIMER_START(_arm_cmplx_mag_f32_timer); TIMER_START(_arm_cmplx_mag_f32_timer);
// 8us (BF) // 8us (BF)
@ -231,7 +227,7 @@ void DSP::step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uin
fft->_rfft_data[fft->_window_size] = fft->_rfft_data[1]; // Nyquist for the interpolator fft->_rfft_data[fft->_window_size] = fft->_rfft_data[1]; // Nyquist for the interpolator
fft->_rfft_data[fft->_window_size + 1] = 0; fft->_rfft_data[fft->_window_size + 1] = 0;
step_cmplx_mag(fft, start_bin, end_bin, harmonics, noise_att_cutoff); step_cmplx_mag(fft, start_bin, end_bin, noise_att_cutoff);
TIMER_END(_arm_cmplx_mag_f32_timer); TIMER_END(_arm_cmplx_mag_f32_timer);
} }
@ -250,12 +246,12 @@ uint16_t DSP::step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_b
_output_count++; _output_count++;
// outputs at approx 1hz // outputs at approx 1hz
if (_output_count % 400 == 0) { if (_output_count % 400 == 0) {
gcs().send_text(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu", GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "FFT(us): t1:%lu,t2:%lu,t3:%lu,t4:%lu,t5:%lu,t6:%lu",
_hanning_timer._timer_avg, _arm_cfft_f32_timer._timer_avg, _bitreversal_timer._timer_avg, _stage_rfft_f32_timer._timer_avg, _arm_cmplx_mag_f32_timer._timer_avg, _step_calc_frequencies._timer_avg); _hanning_timer._timer_avg, _arm_cfft_f32_timer._timer_avg, _bitreversal_timer._timer_avg, _stage_rfft_f32_timer._timer_avg, _arm_cmplx_mag_f32_timer._timer_avg, _step_calc_frequencies._timer_avg);
} }
#endif #endif
return fft->_max_energy_bin; return fft->_peak_data[CENTER]._bin;
} }
static const float PI_N = M_PI / 32.0f; static const float PI_N = M_PI / 32.0f;

24
libraries/AP_HAL_ChibiOS/DSP.h

@ -29,19 +29,18 @@
class ChibiOS::DSP : public AP_HAL::DSP { class ChibiOS::DSP : public AP_HAL::DSP {
public: public:
// initialise an FFT instance // initialise an FFT instance
virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate) override; virtual FFTWindowState* fft_init(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics) override;
// start an FFT analysis // start an FFT analysis with an ObjectBuffer
virtual void fft_start(FFTWindowState* state, const float* samples, uint16_t buffer_index, uint16_t buffer_size) override; virtual void fft_start(FFTWindowState* state, FloatBuffer& samples, uint16_t advance) override;
// perform remaining steps of an FFT analysis // perform remaining steps of an FFT analysis
virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff) override; virtual uint16_t fft_analyse(FFTWindowState* state, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff) override;
// STM32-based FFT state // STM32-based FFT state
class FFTWindowStateARM : public AP_HAL::DSP::FFTWindowState { class FFTWindowStateARM : public AP_HAL::DSP::FFTWindowState {
friend class ChibiOS::DSP; friend class ChibiOS::DSP;
public:
protected: FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate, uint8_t harmonics);
FFTWindowStateARM(uint16_t window_size, uint16_t sample_rate); virtual ~FFTWindowStateARM();
~FFTWindowStateARM();
private: private:
// underlying CMSIS data structure for FFT analysis // underlying CMSIS data structure for FFT analysis
@ -57,14 +56,19 @@ protected:
void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override { void vector_scale_float(const float* vin, float scale, float* vout, uint16_t len) const override {
arm_scale_f32(vin, scale, vout, len); arm_scale_f32(vin, scale, vout, len);
} }
float vector_mean_float(const float* vin, uint16_t len) const override {
float mean_value;
arm_mean_f32(vin, len, &mean_value);
return mean_value;
}
private: private:
// following are the six independent steps for calculating an FFT // following are the six independent steps for calculating an FFT
void step_hanning(FFTWindowStateARM* fft, const float* samples, uint16_t buffer_index, uint16_t buffer_size); void step_hanning(FFTWindowStateARM* fft, FloatBuffer& samples, uint16_t advance);
void step_arm_cfft_f32(FFTWindowStateARM* fft); void step_arm_cfft_f32(FFTWindowStateARM* fft);
void step_bitreversal(FFTWindowStateARM* fft); void step_bitreversal(FFTWindowStateARM* fft);
void step_stage_rfft_f32(FFTWindowStateARM* fft); void step_stage_rfft_f32(FFTWindowStateARM* fft);
void step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, uint8_t harmonics, float noise_att_cutoff); void step_arm_cmplx_mag_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin, float noise_att_cutoff);
uint16_t step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin); uint16_t step_calc_frequencies_f32(FFTWindowStateARM* fft, uint16_t start_bin, uint16_t end_bin);
// candan's frequency interpolator // candan's frequency interpolator
float calculate_candans_estimator(const FFTWindowStateARM* fft, uint16_t k) const; float calculate_candans_estimator(const FFTWindowStateARM* fft, uint16_t k) const;

Loading…
Cancel
Save