|
|
|
@ -56,7 +56,7 @@ void rotation_matrix_from_euler(Matrix3f &m, float roll, float pitch, float yaw)
@@ -56,7 +56,7 @@ void rotation_matrix_from_euler(Matrix3f &m, float roll, float pitch, float yaw)
|
|
|
|
|
|
|
|
|
|
// calculate euler angles from a rotation matrix
|
|
|
|
|
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
|
|
|
|
|
void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw) |
|
|
|
|
void calculate_euler_angles(const Matrix3f &m, float *roll, float *pitch, float *yaw) |
|
|
|
|
{ |
|
|
|
|
if (pitch != NULL) { |
|
|
|
|
*pitch = -safe_asin(m.c.x); |
|
|
|
@ -73,14 +73,14 @@ void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw)
@@ -73,14 +73,14 @@ void calculate_euler_angles(Matrix3f &m, float *roll, float *pitch, float *yaw)
|
|
|
|
|
// create a quaternion from Euler angles
|
|
|
|
|
void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw) |
|
|
|
|
{ |
|
|
|
|
float cr2 = cos(roll/2); |
|
|
|
|
float cp2 = cos(pitch/2); |
|
|
|
|
float cy2 = cos(yaw/2); |
|
|
|
|
float cr2 = cos(roll*0.5); |
|
|
|
|
float cp2 = cos(pitch*0.5); |
|
|
|
|
float cy2 = cos(yaw*0.5); |
|
|
|
|
// the sign reversal here is due to the different conventions
|
|
|
|
|
// in the madgwick quaternion code and the rest of APM
|
|
|
|
|
float sr2 = -sin(roll/2); |
|
|
|
|
float sp2 = -sin(pitch/2); |
|
|
|
|
float sy2 = sin(yaw/2); |
|
|
|
|
float sr2 = -sin(roll*0.5); |
|
|
|
|
float sp2 = -sin(pitch*0.5); |
|
|
|
|
float sy2 = sin(yaw*0.5); |
|
|
|
|
|
|
|
|
|
q.q1 = cr2*cp2*cy2 + sr2*sp2*sy2; |
|
|
|
|
q.q2 = sr2*cp2*cy2 - cr2*sp2*sy2; |
|
|
|
@ -89,7 +89,7 @@ void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw)
@@ -89,7 +89,7 @@ void quaternion_from_euler(Quaternion &q, float roll, float pitch, float yaw)
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// create eulers from a quaternion
|
|
|
|
|
void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw) |
|
|
|
|
void euler_from_quaternion(const Quaternion &q, float *roll, float *pitch, float *yaw) |
|
|
|
|
{ |
|
|
|
|
*roll = -(atan2(2.0*(q.q1*q.q2 + q.q3*q.q4), |
|
|
|
|
1 - 2.0*(q.q2*q.q2 + q.q3*q.q3))); |
|
|
|
@ -98,3 +98,40 @@ void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw)
@@ -98,3 +98,40 @@ void euler_from_quaternion(Quaternion &q, float *roll, float *pitch, float *yaw)
|
|
|
|
|
*yaw = atan2(2.0*(q.q1*q.q4 + q.q2*q.q3), |
|
|
|
|
1 - 2.0*(q.q3*q.q3 + q.q4*q.q4)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// convert a quaternion to a rotation matrix
|
|
|
|
|
void quaternion_to_rotation_matrix(const Quaternion &q, Matrix3f &m) |
|
|
|
|
{ |
|
|
|
|
float q3q3 = q.q3 * q.q3; |
|
|
|
|
float q3q4 = q.q3 * q.q4; |
|
|
|
|
float q2q2 = q.q2 * q.q2; |
|
|
|
|
float q2q3 = q.q2 * q.q3; |
|
|
|
|
float q2q4 = q.q2 * q.q4; |
|
|
|
|
float q1q2 = q.q1 * q.q2; |
|
|
|
|
float q1q3 = q.q1 * q.q3; |
|
|
|
|
float q1q4 = q.q1 * q.q4; |
|
|
|
|
float q4q4 = q.q4 * q.q4; |
|
|
|
|
|
|
|
|
|
m.a.x = 1-2*(q3q3 + q4q4); |
|
|
|
|
m.a.y = 2*(q2q3 - q1q4); |
|
|
|
|
m.a.z = - 2*(q2q4 + q1q3); |
|
|
|
|
m.b.x = 2*(q2q3 + q1q4); |
|
|
|
|
m.b.y = 1-2*(q2q2 + q4q4); |
|
|
|
|
m.b.z = -2*(q3q4 - q1q2); |
|
|
|
|
m.c.x = -2*(q2q4 - q1q3); |
|
|
|
|
m.c.y = -2*(q3q4 + q1q2); |
|
|
|
|
m.c.z = 1-2*(q2q2 + q3q3); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// convert a vector in earth frame to a vector in body frame,
|
|
|
|
|
// assuming body current rotation is given by a quaternion
|
|
|
|
|
void quaternion_earth_to_body(const Quaternion &q, Vector3f &v) |
|
|
|
|
{ |
|
|
|
|
Matrix3f m; |
|
|
|
|
// we reverse z before and afterwards because of the differing
|
|
|
|
|
// quaternion conventions from APM conventions.
|
|
|
|
|
v.z = -v.z; |
|
|
|
|
quaternion_to_rotation_matrix(q, m); |
|
|
|
|
v = m * v; |
|
|
|
|
v.z = -v.z; |
|
|
|
|
} |
|
|
|
|