Browse Source

GCS_MAVLink: generate after importing home-position messages

master
Randy Mackay 10 years ago
parent
commit
544220b599
  1. 7
      libraries/GCS_MAVLink/include/mavlink/v1.0/ardupilotmega/ardupilotmega.h
  2. 8
      libraries/GCS_MAVLink/include/mavlink/v1.0/common/common.h
  3. 417
      libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_home_position.h
  4. 441
      libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_set_home_position.h
  5. 107
      libraries/GCS_MAVLink/include/mavlink/v1.0/common/testsuite.h

7
libraries/GCS_MAVLink/include/mavlink/v1.0/ardupilotmega/ardupilotmega.h

File diff suppressed because one or more lines are too long

8
libraries/GCS_MAVLink/include/mavlink/v1.0/common/common.h

File diff suppressed because one or more lines are too long

417
libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_home_position.h

@ -0,0 +1,417 @@ @@ -0,0 +1,417 @@
// MESSAGE HOME_POSITION PACKING
#define MAVLINK_MSG_ID_HOME_POSITION 242
typedef struct __mavlink_home_position_t
{
int32_t latitude; /*< Latitude (WGS84), in degrees * 1E7*/
int32_t longitude; /*< Longitude (WGS84, in degrees * 1E7*/
int32_t altitude; /*< Altitude (AMSL), in meters * 1000 (positive for up)*/
float x; /*< Local X position of this position in the local coordinate frame*/
float y; /*< Local Y position of this position in the local coordinate frame*/
float z; /*< Local Z position of this position in the local coordinate frame*/
float q[4]; /*< World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground*/
float approach_x; /*< Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
float approach_y; /*< Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
float approach_z; /*< Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
} mavlink_home_position_t;
#define MAVLINK_MSG_ID_HOME_POSITION_LEN 52
#define MAVLINK_MSG_ID_242_LEN 52
#define MAVLINK_MSG_ID_HOME_POSITION_CRC 104
#define MAVLINK_MSG_ID_242_CRC 104
#define MAVLINK_MSG_HOME_POSITION_FIELD_Q_LEN 4
#define MAVLINK_MESSAGE_INFO_HOME_POSITION { \
"HOME_POSITION", \
10, \
{ { "latitude", NULL, MAVLINK_TYPE_INT32_T, 0, 0, offsetof(mavlink_home_position_t, latitude) }, \
{ "longitude", NULL, MAVLINK_TYPE_INT32_T, 0, 4, offsetof(mavlink_home_position_t, longitude) }, \
{ "altitude", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_home_position_t, altitude) }, \
{ "x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_home_position_t, x) }, \
{ "y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_home_position_t, y) }, \
{ "z", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_home_position_t, z) }, \
{ "q", NULL, MAVLINK_TYPE_FLOAT, 4, 24, offsetof(mavlink_home_position_t, q) }, \
{ "approach_x", NULL, MAVLINK_TYPE_FLOAT, 0, 40, offsetof(mavlink_home_position_t, approach_x) }, \
{ "approach_y", NULL, MAVLINK_TYPE_FLOAT, 0, 44, offsetof(mavlink_home_position_t, approach_y) }, \
{ "approach_z", NULL, MAVLINK_TYPE_FLOAT, 0, 48, offsetof(mavlink_home_position_t, approach_z) }, \
} \
}
/**
* @brief Pack a home_position message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_home_position_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_float_array(buf, 24, q, 4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#else
mavlink_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_HOME_POSITION;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
}
/**
* @brief Pack a home_position message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_home_position_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
int32_t latitude,int32_t longitude,int32_t altitude,float x,float y,float z,const float *q,float approach_x,float approach_y,float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_float_array(buf, 24, q, 4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#else
mavlink_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_HOME_POSITION;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
}
/**
* @brief Encode a home_position struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param home_position C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_home_position_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_home_position_t* home_position)
{
return mavlink_msg_home_position_pack(system_id, component_id, msg, home_position->latitude, home_position->longitude, home_position->altitude, home_position->x, home_position->y, home_position->z, home_position->q, home_position->approach_x, home_position->approach_y, home_position->approach_z);
}
/**
* @brief Encode a home_position struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param home_position C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_home_position_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_home_position_t* home_position)
{
return mavlink_msg_home_position_pack_chan(system_id, component_id, chan, msg, home_position->latitude, home_position->longitude, home_position->altitude, home_position->x, home_position->y, home_position->z, home_position->q, home_position->approach_x, home_position->approach_y, home_position->approach_z);
}
/**
* @brief Send a home_position message
* @param chan MAVLink channel to send the message
*
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_home_position_send(mavlink_channel_t chan, int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_float_array(buf, 24, q, 4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, buf, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, buf, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
#else
mavlink_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, (const char *)&packet, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, (const char *)&packet, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
#endif
}
#if MAVLINK_MSG_ID_HOME_POSITION_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_home_position_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_float_array(buf, 24, q, 4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, buf, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, buf, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
#else
mavlink_home_position_t *packet = (mavlink_home_position_t *)msgbuf;
packet->latitude = latitude;
packet->longitude = longitude;
packet->altitude = altitude;
packet->x = x;
packet->y = y;
packet->z = z;
packet->approach_x = approach_x;
packet->approach_y = approach_y;
packet->approach_z = approach_z;
mav_array_memcpy(packet->q, q, sizeof(float)*4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, (const char *)packet, MAVLINK_MSG_ID_HOME_POSITION_LEN, MAVLINK_MSG_ID_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_HOME_POSITION, (const char *)packet, MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
#endif
}
#endif
#endif
// MESSAGE HOME_POSITION UNPACKING
/**
* @brief Get field latitude from home_position message
*
* @return Latitude (WGS84), in degrees * 1E7
*/
static inline int32_t mavlink_msg_home_position_get_latitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 0);
}
/**
* @brief Get field longitude from home_position message
*
* @return Longitude (WGS84, in degrees * 1E7
*/
static inline int32_t mavlink_msg_home_position_get_longitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 4);
}
/**
* @brief Get field altitude from home_position message
*
* @return Altitude (AMSL), in meters * 1000 (positive for up)
*/
static inline int32_t mavlink_msg_home_position_get_altitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 8);
}
/**
* @brief Get field x from home_position message
*
* @return Local X position of this position in the local coordinate frame
*/
static inline float mavlink_msg_home_position_get_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 12);
}
/**
* @brief Get field y from home_position message
*
* @return Local Y position of this position in the local coordinate frame
*/
static inline float mavlink_msg_home_position_get_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 16);
}
/**
* @brief Get field z from home_position message
*
* @return Local Z position of this position in the local coordinate frame
*/
static inline float mavlink_msg_home_position_get_z(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 20);
}
/**
* @brief Get field q from home_position message
*
* @return World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
*/
static inline uint16_t mavlink_msg_home_position_get_q(const mavlink_message_t* msg, float *q)
{
return _MAV_RETURN_float_array(msg, q, 4, 24);
}
/**
* @brief Get field approach_x from home_position message
*
* @return Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_home_position_get_approach_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 40);
}
/**
* @brief Get field approach_y from home_position message
*
* @return Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_home_position_get_approach_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 44);
}
/**
* @brief Get field approach_z from home_position message
*
* @return Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_home_position_get_approach_z(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 48);
}
/**
* @brief Decode a home_position message into a struct
*
* @param msg The message to decode
* @param home_position C-struct to decode the message contents into
*/
static inline void mavlink_msg_home_position_decode(const mavlink_message_t* msg, mavlink_home_position_t* home_position)
{
#if MAVLINK_NEED_BYTE_SWAP
home_position->latitude = mavlink_msg_home_position_get_latitude(msg);
home_position->longitude = mavlink_msg_home_position_get_longitude(msg);
home_position->altitude = mavlink_msg_home_position_get_altitude(msg);
home_position->x = mavlink_msg_home_position_get_x(msg);
home_position->y = mavlink_msg_home_position_get_y(msg);
home_position->z = mavlink_msg_home_position_get_z(msg);
mavlink_msg_home_position_get_q(msg, home_position->q);
home_position->approach_x = mavlink_msg_home_position_get_approach_x(msg);
home_position->approach_y = mavlink_msg_home_position_get_approach_y(msg);
home_position->approach_z = mavlink_msg_home_position_get_approach_z(msg);
#else
memcpy(home_position, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_HOME_POSITION_LEN);
#endif
}

441
libraries/GCS_MAVLink/include/mavlink/v1.0/common/mavlink_msg_set_home_position.h

@ -0,0 +1,441 @@ @@ -0,0 +1,441 @@
// MESSAGE SET_HOME_POSITION PACKING
#define MAVLINK_MSG_ID_SET_HOME_POSITION 243
typedef struct __mavlink_set_home_position_t
{
int32_t latitude; /*< Latitude (WGS84), in degrees * 1E7*/
int32_t longitude; /*< Longitude (WGS84, in degrees * 1E7*/
int32_t altitude; /*< Altitude (AMSL), in meters * 1000 (positive for up)*/
float x; /*< Local X position of this position in the local coordinate frame*/
float y; /*< Local Y position of this position in the local coordinate frame*/
float z; /*< Local Z position of this position in the local coordinate frame*/
float q[4]; /*< World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground*/
float approach_x; /*< Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
float approach_y; /*< Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
float approach_z; /*< Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.*/
uint8_t target_system; /*< System ID.*/
} mavlink_set_home_position_t;
#define MAVLINK_MSG_ID_SET_HOME_POSITION_LEN 53
#define MAVLINK_MSG_ID_243_LEN 53
#define MAVLINK_MSG_ID_SET_HOME_POSITION_CRC 85
#define MAVLINK_MSG_ID_243_CRC 85
#define MAVLINK_MSG_SET_HOME_POSITION_FIELD_Q_LEN 4
#define MAVLINK_MESSAGE_INFO_SET_HOME_POSITION { \
"SET_HOME_POSITION", \
11, \
{ { "latitude", NULL, MAVLINK_TYPE_INT32_T, 0, 0, offsetof(mavlink_set_home_position_t, latitude) }, \
{ "longitude", NULL, MAVLINK_TYPE_INT32_T, 0, 4, offsetof(mavlink_set_home_position_t, longitude) }, \
{ "altitude", NULL, MAVLINK_TYPE_INT32_T, 0, 8, offsetof(mavlink_set_home_position_t, altitude) }, \
{ "x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_set_home_position_t, x) }, \
{ "y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_set_home_position_t, y) }, \
{ "z", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_set_home_position_t, z) }, \
{ "q", NULL, MAVLINK_TYPE_FLOAT, 4, 24, offsetof(mavlink_set_home_position_t, q) }, \
{ "approach_x", NULL, MAVLINK_TYPE_FLOAT, 0, 40, offsetof(mavlink_set_home_position_t, approach_x) }, \
{ "approach_y", NULL, MAVLINK_TYPE_FLOAT, 0, 44, offsetof(mavlink_set_home_position_t, approach_y) }, \
{ "approach_z", NULL, MAVLINK_TYPE_FLOAT, 0, 48, offsetof(mavlink_set_home_position_t, approach_z) }, \
{ "target_system", NULL, MAVLINK_TYPE_UINT8_T, 0, 52, offsetof(mavlink_set_home_position_t, target_system) }, \
} \
}
/**
* @brief Pack a set_home_position message
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
*
* @param target_system System ID.
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_set_home_position_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg,
uint8_t target_system, int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_SET_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_uint8_t(buf, 52, target_system);
_mav_put_float_array(buf, 24, q, 4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#else
mavlink_set_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
packet.target_system = target_system;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_SET_HOME_POSITION;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
}
/**
* @brief Pack a set_home_position message on a channel
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param target_system System ID.
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @return length of the message in bytes (excluding serial stream start sign)
*/
static inline uint16_t mavlink_msg_set_home_position_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan,
mavlink_message_t* msg,
uint8_t target_system,int32_t latitude,int32_t longitude,int32_t altitude,float x,float y,float z,const float *q,float approach_x,float approach_y,float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_SET_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_uint8_t(buf, 52, target_system);
_mav_put_float_array(buf, 24, q, 4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#else
mavlink_set_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
packet.target_system = target_system;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
msg->msgid = MAVLINK_MSG_ID_SET_HOME_POSITION;
#if MAVLINK_CRC_EXTRA
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
}
/**
* @brief Encode a set_home_position struct
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param msg The MAVLink message to compress the data into
* @param set_home_position C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_set_home_position_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_set_home_position_t* set_home_position)
{
return mavlink_msg_set_home_position_pack(system_id, component_id, msg, set_home_position->target_system, set_home_position->latitude, set_home_position->longitude, set_home_position->altitude, set_home_position->x, set_home_position->y, set_home_position->z, set_home_position->q, set_home_position->approach_x, set_home_position->approach_y, set_home_position->approach_z);
}
/**
* @brief Encode a set_home_position struct on a channel
*
* @param system_id ID of this system
* @param component_id ID of this component (e.g. 200 for IMU)
* @param chan The MAVLink channel this message will be sent over
* @param msg The MAVLink message to compress the data into
* @param set_home_position C-struct to read the message contents from
*/
static inline uint16_t mavlink_msg_set_home_position_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_set_home_position_t* set_home_position)
{
return mavlink_msg_set_home_position_pack_chan(system_id, component_id, chan, msg, set_home_position->target_system, set_home_position->latitude, set_home_position->longitude, set_home_position->altitude, set_home_position->x, set_home_position->y, set_home_position->z, set_home_position->q, set_home_position->approach_x, set_home_position->approach_y, set_home_position->approach_z);
}
/**
* @brief Send a set_home_position message
* @param chan MAVLink channel to send the message
*
* @param target_system System ID.
* @param latitude Latitude (WGS84), in degrees * 1E7
* @param longitude Longitude (WGS84, in degrees * 1E7
* @param altitude Altitude (AMSL), in meters * 1000 (positive for up)
* @param x Local X position of this position in the local coordinate frame
* @param y Local Y position of this position in the local coordinate frame
* @param z Local Z position of this position in the local coordinate frame
* @param q World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
* @param approach_x Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_y Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
* @param approach_z Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS
static inline void mavlink_msg_set_home_position_send(mavlink_channel_t chan, uint8_t target_system, int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char buf[MAVLINK_MSG_ID_SET_HOME_POSITION_LEN];
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_uint8_t(buf, 52, target_system);
_mav_put_float_array(buf, 24, q, 4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
#else
mavlink_set_home_position_t packet;
packet.latitude = latitude;
packet.longitude = longitude;
packet.altitude = altitude;
packet.x = x;
packet.y = y;
packet.z = z;
packet.approach_x = approach_x;
packet.approach_y = approach_y;
packet.approach_z = approach_z;
packet.target_system = target_system;
mav_array_memcpy(packet.q, q, sizeof(float)*4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, (const char *)&packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, (const char *)&packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
#endif
}
#if MAVLINK_MSG_ID_SET_HOME_POSITION_LEN <= MAVLINK_MAX_PAYLOAD_LEN
/*
This varient of _send() can be used to save stack space by re-using
memory from the receive buffer. The caller provides a
mavlink_message_t which is the size of a full mavlink message. This
is usually the receive buffer for the channel, and allows a reply to an
incoming message with minimum stack space usage.
*/
static inline void mavlink_msg_set_home_position_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint8_t target_system, int32_t latitude, int32_t longitude, int32_t altitude, float x, float y, float z, const float *q, float approach_x, float approach_y, float approach_z)
{
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS
char *buf = (char *)msgbuf;
_mav_put_int32_t(buf, 0, latitude);
_mav_put_int32_t(buf, 4, longitude);
_mav_put_int32_t(buf, 8, altitude);
_mav_put_float(buf, 12, x);
_mav_put_float(buf, 16, y);
_mav_put_float(buf, 20, z);
_mav_put_float(buf, 40, approach_x);
_mav_put_float(buf, 44, approach_y);
_mav_put_float(buf, 48, approach_z);
_mav_put_uint8_t(buf, 52, target_system);
_mav_put_float_array(buf, 24, q, 4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, buf, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
#else
mavlink_set_home_position_t *packet = (mavlink_set_home_position_t *)msgbuf;
packet->latitude = latitude;
packet->longitude = longitude;
packet->altitude = altitude;
packet->x = x;
packet->y = y;
packet->z = z;
packet->approach_x = approach_x;
packet->approach_y = approach_y;
packet->approach_z = approach_z;
packet->target_system = target_system;
mav_array_memcpy(packet->q, q, sizeof(float)*4);
#if MAVLINK_CRC_EXTRA
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, (const char *)packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN, MAVLINK_MSG_ID_SET_HOME_POSITION_CRC);
#else
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_SET_HOME_POSITION, (const char *)packet, MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
#endif
}
#endif
#endif
// MESSAGE SET_HOME_POSITION UNPACKING
/**
* @brief Get field target_system from set_home_position message
*
* @return System ID.
*/
static inline uint8_t mavlink_msg_set_home_position_get_target_system(const mavlink_message_t* msg)
{
return _MAV_RETURN_uint8_t(msg, 52);
}
/**
* @brief Get field latitude from set_home_position message
*
* @return Latitude (WGS84), in degrees * 1E7
*/
static inline int32_t mavlink_msg_set_home_position_get_latitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 0);
}
/**
* @brief Get field longitude from set_home_position message
*
* @return Longitude (WGS84, in degrees * 1E7
*/
static inline int32_t mavlink_msg_set_home_position_get_longitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 4);
}
/**
* @brief Get field altitude from set_home_position message
*
* @return Altitude (AMSL), in meters * 1000 (positive for up)
*/
static inline int32_t mavlink_msg_set_home_position_get_altitude(const mavlink_message_t* msg)
{
return _MAV_RETURN_int32_t(msg, 8);
}
/**
* @brief Get field x from set_home_position message
*
* @return Local X position of this position in the local coordinate frame
*/
static inline float mavlink_msg_set_home_position_get_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 12);
}
/**
* @brief Get field y from set_home_position message
*
* @return Local Y position of this position in the local coordinate frame
*/
static inline float mavlink_msg_set_home_position_get_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 16);
}
/**
* @brief Get field z from set_home_position message
*
* @return Local Z position of this position in the local coordinate frame
*/
static inline float mavlink_msg_set_home_position_get_z(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 20);
}
/**
* @brief Get field q from set_home_position message
*
* @return World to surface normal and heading transformation of the takeoff position. Used to indicate the heading and slope of the ground
*/
static inline uint16_t mavlink_msg_set_home_position_get_q(const mavlink_message_t* msg, float *q)
{
return _MAV_RETURN_float_array(msg, q, 4, 24);
}
/**
* @brief Get field approach_x from set_home_position message
*
* @return Local X position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_set_home_position_get_approach_x(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 40);
}
/**
* @brief Get field approach_y from set_home_position message
*
* @return Local Y position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_set_home_position_get_approach_y(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 44);
}
/**
* @brief Get field approach_z from set_home_position message
*
* @return Local Z position of the end of the approach vector. Multicopters should set this position based on their takeoff path. Grass-landing fixed wing aircraft should set it the same way as multicopters. Runway-landing fixed wing aircraft should set it to the opposite direction of the takeoff, assuming the takeoff happened from the threshold / touchdown zone.
*/
static inline float mavlink_msg_set_home_position_get_approach_z(const mavlink_message_t* msg)
{
return _MAV_RETURN_float(msg, 48);
}
/**
* @brief Decode a set_home_position message into a struct
*
* @param msg The message to decode
* @param set_home_position C-struct to decode the message contents into
*/
static inline void mavlink_msg_set_home_position_decode(const mavlink_message_t* msg, mavlink_set_home_position_t* set_home_position)
{
#if MAVLINK_NEED_BYTE_SWAP
set_home_position->latitude = mavlink_msg_set_home_position_get_latitude(msg);
set_home_position->longitude = mavlink_msg_set_home_position_get_longitude(msg);
set_home_position->altitude = mavlink_msg_set_home_position_get_altitude(msg);
set_home_position->x = mavlink_msg_set_home_position_get_x(msg);
set_home_position->y = mavlink_msg_set_home_position_get_y(msg);
set_home_position->z = mavlink_msg_set_home_position_get_z(msg);
mavlink_msg_set_home_position_get_q(msg, set_home_position->q);
set_home_position->approach_x = mavlink_msg_set_home_position_get_approach_x(msg);
set_home_position->approach_y = mavlink_msg_set_home_position_get_approach_y(msg);
set_home_position->approach_z = mavlink_msg_set_home_position_get_approach_z(msg);
set_home_position->target_system = mavlink_msg_set_home_position_get_target_system(msg);
#else
memcpy(set_home_position, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_SET_HOME_POSITION_LEN);
#endif
}

107
libraries/GCS_MAVLink/include/mavlink/v1.0/common/testsuite.h

@ -5509,6 +5509,111 @@ static void mavlink_test_vibration(uint8_t system_id, uint8_t component_id, mavl @@ -5509,6 +5509,111 @@ static void mavlink_test_vibration(uint8_t system_id, uint8_t component_id, mavl
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
}
static void mavlink_test_home_position(uint8_t system_id, uint8_t component_id, mavlink_message_t *last_msg)
{
mavlink_message_t msg;
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
uint16_t i;
mavlink_home_position_t packet_in = {
963497464,963497672,963497880,101.0,129.0,157.0,{ 185.0, 186.0, 187.0, 188.0 },297.0,325.0,353.0
};
mavlink_home_position_t packet1, packet2;
memset(&packet1, 0, sizeof(packet1));
packet1.latitude = packet_in.latitude;
packet1.longitude = packet_in.longitude;
packet1.altitude = packet_in.altitude;
packet1.x = packet_in.x;
packet1.y = packet_in.y;
packet1.z = packet_in.z;
packet1.approach_x = packet_in.approach_x;
packet1.approach_y = packet_in.approach_y;
packet1.approach_z = packet_in.approach_z;
mav_array_memcpy(packet1.q, packet_in.q, sizeof(float)*4);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_home_position_encode(system_id, component_id, &msg, &packet1);
mavlink_msg_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_home_position_pack(system_id, component_id, &msg , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_home_position_pack_chan(system_id, component_id, MAVLINK_COMM_0, &msg , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_to_send_buffer(buffer, &msg);
for (i=0; i<mavlink_msg_get_send_buffer_length(&msg); i++) {
comm_send_ch(MAVLINK_COMM_0, buffer[i]);
}
mavlink_msg_home_position_decode(last_msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_home_position_send(MAVLINK_COMM_1 , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_home_position_decode(last_msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
}
static void mavlink_test_set_home_position(uint8_t system_id, uint8_t component_id, mavlink_message_t *last_msg)
{
mavlink_message_t msg;
uint8_t buffer[MAVLINK_MAX_PACKET_LEN];
uint16_t i;
mavlink_set_home_position_t packet_in = {
963497464,963497672,963497880,101.0,129.0,157.0,{ 185.0, 186.0, 187.0, 188.0 },297.0,325.0,353.0,161
};
mavlink_set_home_position_t packet1, packet2;
memset(&packet1, 0, sizeof(packet1));
packet1.latitude = packet_in.latitude;
packet1.longitude = packet_in.longitude;
packet1.altitude = packet_in.altitude;
packet1.x = packet_in.x;
packet1.y = packet_in.y;
packet1.z = packet_in.z;
packet1.approach_x = packet_in.approach_x;
packet1.approach_y = packet_in.approach_y;
packet1.approach_z = packet_in.approach_z;
packet1.target_system = packet_in.target_system;
mav_array_memcpy(packet1.q, packet_in.q, sizeof(float)*4);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_set_home_position_encode(system_id, component_id, &msg, &packet1);
mavlink_msg_set_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_set_home_position_pack(system_id, component_id, &msg , packet1.target_system , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_set_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_set_home_position_pack_chan(system_id, component_id, MAVLINK_COMM_0, &msg , packet1.target_system , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_set_home_position_decode(&msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_to_send_buffer(buffer, &msg);
for (i=0; i<mavlink_msg_get_send_buffer_length(&msg); i++) {
comm_send_ch(MAVLINK_COMM_0, buffer[i]);
}
mavlink_msg_set_home_position_decode(last_msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
memset(&packet2, 0, sizeof(packet2));
mavlink_msg_set_home_position_send(MAVLINK_COMM_1 , packet1.target_system , packet1.latitude , packet1.longitude , packet1.altitude , packet1.x , packet1.y , packet1.z , packet1.q , packet1.approach_x , packet1.approach_y , packet1.approach_z );
mavlink_msg_set_home_position_decode(last_msg, &packet2);
MAVLINK_ASSERT(memcmp(&packet1, &packet2, sizeof(packet1)) == 0);
}
static void mavlink_test_v2_extension(uint8_t system_id, uint8_t component_id, mavlink_message_t *last_msg)
{
mavlink_message_t msg;
@ -5941,6 +6046,8 @@ static void mavlink_test_common(uint8_t system_id, uint8_t component_id, mavlink @@ -5941,6 +6046,8 @@ static void mavlink_test_common(uint8_t system_id, uint8_t component_id, mavlink
mavlink_test_autopilot_version(system_id, component_id, last_msg);
mavlink_test_landing_target(system_id, component_id, last_msg);
mavlink_test_vibration(system_id, component_id, last_msg);
mavlink_test_home_position(system_id, component_id, last_msg);
mavlink_test_set_home_position(system_id, component_id, last_msg);
mavlink_test_v2_extension(system_id, component_id, last_msg);
mavlink_test_memory_vect(system_id, component_id, last_msg);
mavlink_test_debug_vect(system_id, component_id, last_msg);

Loading…
Cancel
Save