Nghia Nguyen
6 years ago
committed by
Randy Mackay
3 changed files with 1792 additions and 2 deletions
@ -0,0 +1,516 @@
@@ -0,0 +1,516 @@
|
||||
/*
|
||||
This program is free software: you can redistribute it and/or modify |
||||
it under the terms of the GNU General Public License as published by |
||||
the Free Software Foundation, either version 3 of the License, or |
||||
(at your option) any later version. |
||||
|
||||
This program is distributed in the hope that it will be useful, |
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of |
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||||
GNU General Public License for more details. |
||||
|
||||
You should have received a copy of the GNU General Public License |
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/ |
||||
/*
|
||||
driver for ST VL53L1X lidar |
||||
|
||||
Many thanks to Pololu, https://github.com/pololu/vl53l1x-arduino and
|
||||
the ST example code |
||||
*/ |
||||
#include "AP_RangeFinder_VL53L1X.h" |
||||
|
||||
#include <utility> |
||||
|
||||
#include <AP_HAL/AP_HAL.h> |
||||
#include <AP_HAL/utility/sparse-endian.h> |
||||
#include <stdio.h> |
||||
#include <AP_Common/Semaphore.h> |
||||
|
||||
extern const AP_HAL::HAL& hal; |
||||
|
||||
/*
|
||||
The constructor also initializes the rangefinder. Note that this |
||||
constructor is not called until detect() returns true, so we |
||||
already know that we should setup the rangefinder |
||||
*/ |
||||
AP_RangeFinder_VL53L1X::AP_RangeFinder_VL53L1X(RangeFinder::RangeFinder_State &_state, AP_HAL::OwnPtr<AP_HAL::I2CDevice> _dev) |
||||
: AP_RangeFinder_Backend(_state) |
||||
, dev(std::move(_dev)) {} |
||||
|
||||
/*
|
||||
detect if a VL53L1X rangefinder is connected. We'll detect by |
||||
trying to take a reading on I2C. If we get a result the sensor is |
||||
there. |
||||
*/ |
||||
AP_RangeFinder_Backend *AP_RangeFinder_VL53L1X::detect(RangeFinder::RangeFinder_State &_state, AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev) |
||||
{ |
||||
if (!dev) { |
||||
return nullptr; |
||||
} |
||||
|
||||
AP_RangeFinder_VL53L1X *sensor |
||||
= new AP_RangeFinder_VL53L1X(_state, std::move(dev)); |
||||
|
||||
if (!sensor) { |
||||
delete sensor; |
||||
return nullptr; |
||||
} |
||||
|
||||
sensor->dev->get_semaphore()->take_blocking(); |
||||
|
||||
if (!sensor->check_id() || !sensor->init()) { |
||||
sensor->dev->get_semaphore()->give(); |
||||
delete sensor; |
||||
return nullptr; |
||||
} |
||||
|
||||
sensor->dev->get_semaphore()->give(); |
||||
|
||||
return sensor; |
||||
} |
||||
|
||||
// check sensor ID registers
|
||||
bool AP_RangeFinder_VL53L1X::check_id(void) |
||||
{ |
||||
uint8_t v1, v2; |
||||
v1 = read_register(0x010F); |
||||
v2 = read_register(0x0110); |
||||
|
||||
if ((v1 != 0xEA) || |
||||
(v2 != 0xCC)) { |
||||
return false; |
||||
} |
||||
printf("Detected VL53L1X on bus 0x%x\n", dev->get_bus_id()); |
||||
return true; |
||||
} |
||||
|
||||
/*
|
||||
initialise sensor |
||||
*/ |
||||
bool AP_RangeFinder_VL53L1X::init() |
||||
{ |
||||
// setup for 2.8V operation
|
||||
write_register(PAD_I2C_HV__EXTSUP_CONFIG, |
||||
read_register(PAD_I2C_HV__EXTSUP_CONFIG) | 0x01); |
||||
|
||||
// store oscillator info for later use
|
||||
fast_osc_frequency = read_register16(OSC_MEASURED__FAST_OSC__FREQUENCY); |
||||
osc_calibrate_val = read_register16(RESULT__OSC_CALIBRATE_VAL); |
||||
|
||||
// static config
|
||||
write_register16(DSS_CONFIG__TARGET_TOTAL_RATE_MCPS, TargetRate); // should already be this value after reset
|
||||
write_register(GPIO__TIO_HV_STATUS, 0x02); |
||||
write_register(SIGMA_ESTIMATOR__EFFECTIVE_PULSE_WIDTH_NS, 8); // tuning parm default
|
||||
write_register(SIGMA_ESTIMATOR__EFFECTIVE_AMBIENT_WIDTH_NS, 16); // tuning parm default
|
||||
write_register(ALGO__CROSSTALK_COMPENSATION_VALID_HEIGHT_MM, 0x01); |
||||
write_register(ALGO__RANGE_IGNORE_VALID_HEIGHT_MM, 0xFF); |
||||
write_register(ALGO__RANGE_MIN_CLIP, 0); // tuning parm default
|
||||
write_register(ALGO__CONSISTENCY_CHECK__TOLERANCE, 2); // tuning parm default
|
||||
|
||||
// general config
|
||||
write_register16(SYSTEM__THRESH_RATE_HIGH, 0x0000); |
||||
write_register16(SYSTEM__THRESH_RATE_LOW, 0x0000); |
||||
write_register(DSS_CONFIG__APERTURE_ATTENUATION, 0x38); |
||||
|
||||
// timing config
|
||||
write_register16(RANGE_CONFIG__SIGMA_THRESH, 360); // tuning parm default
|
||||
write_register16(RANGE_CONFIG__MIN_COUNT_RATE_RTN_LIMIT_MCPS, 192); // tuning parm default
|
||||
|
||||
// dynamic config
|
||||
write_register(SYSTEM__GROUPED_PARAMETER_HOLD_0, 0x01); |
||||
write_register(SYSTEM__GROUPED_PARAMETER_HOLD_1, 0x01); |
||||
write_register(SD_CONFIG__QUANTIFIER, 2); // tuning parm default
|
||||
|
||||
// from VL53L1_preset_mode_timed_ranging_*
|
||||
// GPH is 0 after reset, but writing GPH0 and GPH1 above seem to set GPH to 1,
|
||||
// and things don't seem to work if we don't set GPH back to 0 (which the API
|
||||
// does here).
|
||||
write_register(SYSTEM__GROUPED_PARAMETER_HOLD, 0x00); |
||||
write_register(SYSTEM__SEED_CONFIG, 1); // tuning parm default
|
||||
|
||||
// from VL53L1_config_low_power_auto_mode
|
||||
write_register(SYSTEM__SEQUENCE_CONFIG, 0x8B); // VHV, PHASECAL, DSS1, RANGE
|
||||
write_register16(DSS_CONFIG__MANUAL_EFFECTIVE_SPADS_SELECT, 200 << 8); |
||||
write_register(DSS_CONFIG__ROI_MODE_CONTROL, 2); // REQUESTED_EFFFECTIVE_SPADS
|
||||
|
||||
setDistanceMode(Long); |
||||
setMeasurementTimingBudget(40000); |
||||
|
||||
// the API triggers this change in VL53L1_init_and_start_range() once a
|
||||
// measurement is started; assumes MM1 and MM2 are disabled
|
||||
write_register16(ALGO__PART_TO_PART_RANGE_OFFSET_MM, |
||||
read_register16(MM_CONFIG__OUTER_OFFSET_MM) * 4); |
||||
|
||||
// set continuous mode
|
||||
startContinuous(50); |
||||
calibrated = false; |
||||
|
||||
// call timer() every 50ms. We expect new data to be available every 50ms
|
||||
dev->register_periodic_callback(50000, |
||||
FUNCTOR_BIND_MEMBER(&AP_RangeFinder_VL53L1X::timer, void)); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
// set distance mode to Short, Medium, or Long
|
||||
// based on VL53L1_SetDistanceMode()
|
||||
bool AP_RangeFinder_VL53L1X::setDistanceMode(DistanceMode distance_mode) |
||||
{ |
||||
// save existing timing budget
|
||||
uint32_t budget_us = getMeasurementTimingBudget(); |
||||
|
||||
switch (distance_mode) { |
||||
case Short: |
||||
// from VL53L1_preset_mode_standard_ranging_short_range()
|
||||
|
||||
// timing config
|
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x07); |
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x05); |
||||
write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0x38); |
||||
|
||||
// dynamic config
|
||||
write_register(SD_CONFIG__WOI_SD0, 0x07); |
||||
write_register(SD_CONFIG__WOI_SD1, 0x05); |
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD0, 6); // tuning parm default
|
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD1, 6); // tuning parm default
|
||||
|
||||
break; |
||||
|
||||
case Medium: |
||||
// from VL53L1_preset_mode_standard_ranging()
|
||||
|
||||
// timing config
|
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0B); |
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x09); |
||||
write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0x78); |
||||
|
||||
// dynamic config
|
||||
write_register(SD_CONFIG__WOI_SD0, 0x0B); |
||||
write_register(SD_CONFIG__WOI_SD1, 0x09); |
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD0, 10); // tuning parm default
|
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD1, 10); // tuning parm default
|
||||
|
||||
break; |
||||
|
||||
case Long: |
||||
// from VL53L1_preset_mode_standard_ranging_long_range()
|
||||
|
||||
// timing config
|
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_A, 0x0F); |
||||
write_register(RANGE_CONFIG__VCSEL_PERIOD_B, 0x0D); |
||||
write_register(RANGE_CONFIG__VALID_PHASE_HIGH, 0xB8); |
||||
|
||||
// dynamic config
|
||||
write_register(SD_CONFIG__WOI_SD0, 0x0F); |
||||
write_register(SD_CONFIG__WOI_SD1, 0x0D); |
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD0, 14); // tuning parm default
|
||||
write_register(SD_CONFIG__INITIAL_PHASE_SD1, 14); // tuning parm default
|
||||
|
||||
break; |
||||
|
||||
default: |
||||
// unrecognized mode - do nothing
|
||||
return false; |
||||
} |
||||
|
||||
// reapply timing budget
|
||||
setMeasurementTimingBudget(budget_us); |
||||
|
||||
return true; |
||||
} |
||||
|
||||
// Set the measurement timing budget in microseconds, which is the time allowed
|
||||
// for one measurement. A longer timing budget allows for more accurate measurements.
|
||||
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
|
||||
bool AP_RangeFinder_VL53L1X::setMeasurementTimingBudget(uint32_t budget_us) |
||||
{ |
||||
// assumes PresetMode is LOWPOWER_AUTONOMOUS
|
||||
if (budget_us <= TimingGuard) { |
||||
return false; |
||||
} |
||||
|
||||
uint32_t range_config_timeout_us = budget_us - TimingGuard; |
||||
if (range_config_timeout_us > 1100000) { |
||||
return false; // FDA_MAX_TIMING_BUDGET_US * 2
|
||||
} |
||||
|
||||
range_config_timeout_us /= 2; |
||||
|
||||
// VL53L1_calc_timeout_register_values() begin
|
||||
|
||||
uint32_t macro_period_us; |
||||
|
||||
// "Update Macro Period for Range A VCSEL Period"
|
||||
macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_A)); |
||||
|
||||
// "Update Phase timeout - uses Timing A"
|
||||
// Timeout of 1000 is tuning parm default (TIMED_PHASECAL_CONFIG_TIMEOUT_US_DEFAULT)
|
||||
// via VL53L1_get_preset_mode_timing_cfg().
|
||||
uint32_t phasecal_timeout_mclks = timeoutMicrosecondsToMclks(1000, macro_period_us); |
||||
if (phasecal_timeout_mclks > 0xFF) { |
||||
phasecal_timeout_mclks = 0xFF; |
||||
} |
||||
write_register(PHASECAL_CONFIG__TIMEOUT_MACROP, phasecal_timeout_mclks); |
||||
|
||||
// "Update MM Timing A timeout"
|
||||
// Timeout of 1 is tuning parm default (LOWPOWERAUTO_MM_CONFIG_TIMEOUT_US_DEFAULT)
|
||||
// via VL53L1_get_preset_mode_timing_cfg(). With the API, the register
|
||||
// actually ends up with a slightly different value because it gets assigned,
|
||||
// retrieved, recalculated with a different macro period, and reassigned,
|
||||
// but it probably doesn't matter because it seems like the MM ("mode
|
||||
// mitigation"?) sequence steps are disabled in low power auto mode anyway.
|
||||
write_register16(MM_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( |
||||
timeoutMicrosecondsToMclks(1, macro_period_us))); |
||||
|
||||
// "Update Range Timing A timeout"
|
||||
write_register16(RANGE_CONFIG__TIMEOUT_MACROP_A, encodeTimeout( |
||||
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); |
||||
|
||||
// "Update Macro Period for Range B VCSEL Period"
|
||||
macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_B)); |
||||
|
||||
// "Update MM Timing B timeout"
|
||||
// (See earlier comment about MM Timing A timeout.)
|
||||
write_register16(MM_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( |
||||
timeoutMicrosecondsToMclks(1, macro_period_us))); |
||||
|
||||
// "Update Range Timing B timeout"
|
||||
write_register16(RANGE_CONFIG__TIMEOUT_MACROP_B, encodeTimeout( |
||||
timeoutMicrosecondsToMclks(range_config_timeout_us, macro_period_us))); |
||||
|
||||
// VL53L1_calc_timeout_register_values() end
|
||||
|
||||
return true; |
||||
} |
||||
|
||||
// Get the measurement timing budget in microseconds
|
||||
// based on VL53L1_SetMeasurementTimingBudgetMicroSeconds()
|
||||
uint32_t AP_RangeFinder_VL53L1X::getMeasurementTimingBudget() |
||||
{ |
||||
// assumes PresetMode is LOWPOWER_AUTONOMOUS and these sequence steps are
|
||||
// enabled: VHV, PHASECAL, DSS1, RANGE
|
||||
|
||||
// "Update Macro Period for Range A VCSEL Period"
|
||||
uint32_t macro_period_us = calcMacroPeriod(read_register(RANGE_CONFIG__VCSEL_PERIOD_A)); |
||||
|
||||
// "Get Range Timing A timeout"
|
||||
uint32_t range_config_timeout_us = timeoutMclksToMicroseconds(decodeTimeout( |
||||
read_register16(RANGE_CONFIG__TIMEOUT_MACROP_A)), macro_period_us); |
||||
|
||||
return 2 * range_config_timeout_us + TimingGuard; |
||||
} |
||||
|
||||
// Start continuous ranging measurements, with the given inter-measurement
|
||||
// period in milliseconds determining how often the sensor takes a measurement.
|
||||
void AP_RangeFinder_VL53L1X::startContinuous(uint32_t period_ms) |
||||
{ |
||||
// fix for actual measurement period shorter than set
|
||||
uint32_t adjusted_period_ms = period_ms + (period_ms * 64 / 1000); |
||||
|
||||
// from VL53L1_set_inter_measurement_period_ms()
|
||||
write_register32(SYSTEM__INTERMEASUREMENT_PERIOD, adjusted_period_ms * osc_calibrate_val); |
||||
write_register(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
|
||||
write_register(SYSTEM__MODE_START, 0x40); // mode_range__timed
|
||||
} |
||||
|
||||
// Decode sequence step timeout in MCLKs from register value
|
||||
// based on VL53L1_decode_timeout()
|
||||
uint32_t AP_RangeFinder_VL53L1X::decodeTimeout(uint16_t reg_val) |
||||
{ |
||||
return ((uint32_t)(reg_val & 0xFF) << (reg_val >> 8)) + 1; |
||||
} |
||||
|
||||
// Encode sequence step timeout register value from timeout in MCLKs
|
||||
// based on VL53L1_encode_timeout()
|
||||
uint16_t AP_RangeFinder_VL53L1X::encodeTimeout(uint32_t timeout_mclks) |
||||
{ |
||||
// encoded format: "(LSByte * 2^MSByte) + 1"
|
||||
uint32_t ls_byte = 0; |
||||
uint16_t ms_byte = 0; |
||||
|
||||
if (timeout_mclks > 0) { |
||||
ls_byte = timeout_mclks - 1; |
||||
while ((ls_byte & 0xFFFFFF00) > 0) { |
||||
ls_byte >>= 1; |
||||
ms_byte++; |
||||
} |
||||
return (ms_byte << 8) | (ls_byte & 0xFF); |
||||
} |
||||
else { |
||||
return 0; |
||||
} |
||||
} |
||||
|
||||
// Convert sequence step timeout from macro periods to microseconds with given
|
||||
// macro period in microseconds (12.12 format)
|
||||
// based on VL53L1_calc_timeout_us()
|
||||
uint32_t AP_RangeFinder_VL53L1X::timeoutMclksToMicroseconds(uint32_t timeout_mclks, uint32_t macro_period_us) |
||||
{ |
||||
return ((uint64_t)timeout_mclks * macro_period_us + 0x800) >> 12; |
||||
} |
||||
|
||||
// Convert sequence step timeout from microseconds to macro periods with given
|
||||
// macro period in microseconds (12.12 format)
|
||||
// based on VL53L1_calc_timeout_mclks()
|
||||
uint32_t AP_RangeFinder_VL53L1X::timeoutMicrosecondsToMclks(uint32_t timeout_us, uint32_t macro_period_us) |
||||
{ |
||||
return (((uint32_t)timeout_us << 12) + (macro_period_us >> 1)) / macro_period_us; |
||||
} |
||||
|
||||
// Calculate macro period in microseconds (12.12 format) with given VCSEL period
|
||||
// assumes fast_osc_frequency has been read and stored
|
||||
// based on VL53L1_calc_macro_period_us()
|
||||
uint32_t AP_RangeFinder_VL53L1X::calcMacroPeriod(uint8_t vcsel_period) |
||||
{ |
||||
// from VL53L1_calc_pll_period_us()
|
||||
// fast osc frequency in 4.12 format; PLL period in 0.24 format
|
||||
uint32_t pll_period_us = ((uint32_t)0x01 << 30) / fast_osc_frequency; |
||||
|
||||
// from VL53L1_decode_vcsel_period()
|
||||
uint8_t vcsel_period_pclks = (vcsel_period + 1) << 1; |
||||
|
||||
// VL53L1_MACRO_PERIOD_VCSEL_PERIODS = 2304
|
||||
uint32_t macro_period_us = (uint32_t)2304 * pll_period_us; |
||||
macro_period_us >>= 6; |
||||
macro_period_us *= vcsel_period_pclks; |
||||
macro_period_us >>= 6; |
||||
|
||||
return macro_period_us; |
||||
} |
||||
|
||||
// "Setup ranges after the first one in low power auto mode by turning off
|
||||
// FW calibration steps and programming static values"
|
||||
// based on VL53L1_low_power_auto_setup_manual_calibration()
|
||||
void AP_RangeFinder_VL53L1X::setupManualCalibration(void) |
||||
{ |
||||
uint8_t saved_vhv_init; |
||||
uint8_t saved_vhv_timeout; |
||||
// "save original vhv configs"
|
||||
saved_vhv_init = read_register(VHV_CONFIG__INIT); |
||||
saved_vhv_timeout = read_register(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND); |
||||
|
||||
// "disable VHV init"
|
||||
write_register(VHV_CONFIG__INIT, saved_vhv_init & 0x7F); |
||||
|
||||
// "set loop bound to tuning param"
|
||||
write_register(VHV_CONFIG__TIMEOUT_MACROP_LOOP_BOUND, |
||||
(saved_vhv_timeout & 0x03) + (3 << 2)); // tuning parm default (LOWPOWERAUTO_VHV_LOOP_BOUND_DEFAULT)
|
||||
|
||||
// "override phasecal"
|
||||
write_register(PHASECAL_CONFIG__OVERRIDE, 0x01); |
||||
write_register(CAL_CONFIG__VCSEL_START, read_register(PHASECAL_RESULT__VCSEL_START)); |
||||
} |
||||
|
||||
// check if sensor has new reading available
|
||||
// assumes interrupt is active low (GPIO_HV_MUX__CTRL bit 4 is 1)
|
||||
bool AP_RangeFinder_VL53L1X::dataReady(void) |
||||
{ |
||||
return ((read_register(GPIO__TIO_HV_STATUS) & 0x01) == 0); |
||||
} |
||||
|
||||
// read - return last value measured by sensor
|
||||
bool AP_RangeFinder_VL53L1X::get_reading(uint16_t &reading_mm) |
||||
{ |
||||
uint8_t tries = 10; |
||||
while (!dataReady()) { |
||||
tries--; |
||||
hal.scheduler->delay(1); |
||||
if (tries == 0) { |
||||
return false; |
||||
} |
||||
} |
||||
|
||||
reading_mm = read_register16(RESULT__FINAL_CROSSTALK_CORRECTED_RANGE_MM_SD0); |
||||
// "apply correction gain"
|
||||
// gain factor of 2011 is tuning parm default (VL53L1_TUNINGPARM_LITE_RANGING_GAIN_FACTOR_DEFAULT)
|
||||
// Basically, this appears to scale the result by 2011/2048, or about 98%
|
||||
// (with the 1024 added for proper rounding).
|
||||
reading_mm = ((uint32_t)reading_mm * 2011 + 0x0400) / 0x0800; |
||||
|
||||
if (!calibrated) |
||||
{ |
||||
setupManualCalibration(); |
||||
calibrated = true; |
||||
} |
||||
|
||||
write_register(SYSTEM__INTERRUPT_CLEAR, 0x01); // sys_interrupt_clear_range
|
||||
return true; |
||||
} |
||||
|
||||
uint8_t AP_RangeFinder_VL53L1X::read_register(uint16_t reg) |
||||
{ |
||||
uint8_t v = 0; |
||||
uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; |
||||
dev->transfer(b, 2, &v, 1); |
||||
return v; |
||||
} |
||||
|
||||
uint16_t AP_RangeFinder_VL53L1X::read_register16(uint16_t reg) |
||||
{ |
||||
uint16_t v = 0; |
||||
uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; |
||||
dev->transfer(b, 2, (uint8_t *)&v, 2); |
||||
return be16toh(v); |
||||
} |
||||
|
||||
uint32_t AP_RangeFinder_VL53L1X::read_register32(uint16_t reg) |
||||
{ |
||||
uint32_t v = 0; |
||||
uint8_t b[2] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF) }; |
||||
dev->transfer(b, 2, (uint8_t *)&v, 4); |
||||
return be32toh(v); |
||||
} |
||||
|
||||
void AP_RangeFinder_VL53L1X::write_register(uint16_t reg, uint8_t value) |
||||
{ |
||||
uint8_t b[3] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF), value }; |
||||
dev->transfer(b, 3, nullptr, 0); |
||||
} |
||||
|
||||
void AP_RangeFinder_VL53L1X::write_register16(uint16_t reg, uint16_t value) |
||||
{ |
||||
uint8_t b[4] = { uint8_t(reg >> 8), uint8_t(reg & 0xFF), uint8_t(value >> 8), uint8_t(value & 0xFF) }; |
||||
dev->transfer(b, 4, nullptr, 0); |
||||
} |
||||
|
||||
void AP_RangeFinder_VL53L1X::write_register32(uint16_t reg, uint32_t value) |
||||
{ |
||||
uint8_t b[6] = { uint8_t(reg >> 8), |
||||
uint8_t(reg & 0xFF), |
||||
uint8_t((value >> 24) & 0xFF), |
||||
uint8_t((value >> 16) & 0xFF), |
||||
uint8_t((value >> 8) & 0xFF), |
||||
uint8_t((value) & 0xFF) }; |
||||
dev->transfer(b, 6, nullptr, 0); |
||||
} |
||||
|
||||
/*
|
||||
timer called at 20Hz |
||||
*/ |
||||
void AP_RangeFinder_VL53L1X::timer(void) |
||||
{ |
||||
uint16_t range_mm; |
||||
if ((get_reading(range_mm)) && (range_mm <= 4000)) { |
||||
sum_mm += range_mm; |
||||
counter++; |
||||
} |
||||
} |
||||
|
||||
/*
|
||||
update the state of the sensor |
||||
*/ |
||||
void AP_RangeFinder_VL53L1X::update(void) |
||||
{ |
||||
WITH_SEMAPHORE(_sem); |
||||
if (counter > 0) { |
||||
state.distance_cm = sum_mm / (10*counter); |
||||
state.last_reading_ms = AP_HAL::millis(); |
||||
update_status(); |
||||
sum_mm = 0; |
||||
counter = 0; |
||||
} else if (AP_HAL::millis() - state.last_reading_ms > 200) { |
||||
// if no updates for 0.2s set no-data
|
||||
set_status(RangeFinder::RangeFinder_NoData); |
||||
} |
||||
} |
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue