9 changed files with 1023 additions and 164 deletions
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -0,0 +1,473 @@
@@ -0,0 +1,473 @@
|
||||
// MESSAGE OPTICAL_FLOW_RAD PACKING
|
||||
|
||||
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106 |
||||
|
||||
typedef struct __mavlink_optical_flow_rad_t |
||||
{ |
||||
uint64_t time_usec; ///< Timestamp (microseconds, synced to UNIX time or since system boot)
|
||||
uint32_t integration_time_us; ///< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.
|
||||
float integrated_x; ///< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)
|
||||
float integrated_y; ///< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)
|
||||
float integrated_xgyro; ///< RH rotation around X axis (rad)
|
||||
float integrated_ygyro; ///< RH rotation around Y axis (rad)
|
||||
float integrated_zgyro; ///< RH rotation around Z axis (rad)
|
||||
uint32_t time_delta_distance_us; ///< Time in microseconds since the distance was sampled.
|
||||
float distance; ///< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.
|
||||
int16_t temperature; ///< Temperature * 100 in centi-degrees Celsius
|
||||
uint8_t sensor_id; ///< Sensor ID
|
||||
uint8_t quality; ///< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality
|
||||
} mavlink_optical_flow_rad_t; |
||||
|
||||
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44 |
||||
#define MAVLINK_MSG_ID_106_LEN 44 |
||||
|
||||
#define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138 |
||||
#define MAVLINK_MSG_ID_106_CRC 138 |
||||
|
||||
|
||||
|
||||
#define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \ |
||||
"OPTICAL_FLOW_RAD", \
|
||||
12, \
|
||||
{ { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \
|
||||
{ "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \
|
||||
{ "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \
|
||||
{ "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \
|
||||
{ "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \
|
||||
{ "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \
|
||||
{ "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \
|
||||
{ "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \
|
||||
{ "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \
|
||||
{ "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \
|
||||
{ "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \
|
||||
{ "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \
|
||||
} \
|
||||
} |
||||
|
||||
|
||||
/**
|
||||
* @brief Pack a optical_flow_rad message |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param msg The MAVLink message to compress the data into |
||||
* |
||||
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
||||
* @param sensor_id Sensor ID |
||||
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
||||
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
||||
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
||||
* @param integrated_xgyro RH rotation around X axis (rad) |
||||
* @param integrated_ygyro RH rotation around Y axis (rad) |
||||
* @param integrated_zgyro RH rotation around Z axis (rad) |
||||
* @param temperature Temperature * 100 in centi-degrees Celsius |
||||
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
||||
* @param time_delta_distance_us Time in microseconds since the distance was sampled. |
||||
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
||||
* @return length of the message in bytes (excluding serial stream start sign) |
||||
*/ |
||||
static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, |
||||
uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
||||
_mav_put_uint64_t(buf, 0, time_usec); |
||||
_mav_put_uint32_t(buf, 8, integration_time_us); |
||||
_mav_put_float(buf, 12, integrated_x); |
||||
_mav_put_float(buf, 16, integrated_y); |
||||
_mav_put_float(buf, 20, integrated_xgyro); |
||||
_mav_put_float(buf, 24, integrated_ygyro); |
||||
_mav_put_float(buf, 28, integrated_zgyro); |
||||
_mav_put_uint32_t(buf, 32, time_delta_distance_us); |
||||
_mav_put_float(buf, 36, distance); |
||||
_mav_put_int16_t(buf, 40, temperature); |
||||
_mav_put_uint8_t(buf, 42, sensor_id); |
||||
_mav_put_uint8_t(buf, 43, quality); |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#else |
||||
mavlink_optical_flow_rad_t packet; |
||||
packet.time_usec = time_usec; |
||||
packet.integration_time_us = integration_time_us; |
||||
packet.integrated_x = integrated_x; |
||||
packet.integrated_y = integrated_y; |
||||
packet.integrated_xgyro = integrated_xgyro; |
||||
packet.integrated_ygyro = integrated_ygyro; |
||||
packet.integrated_zgyro = integrated_zgyro; |
||||
packet.time_delta_distance_us = time_delta_distance_us; |
||||
packet.distance = distance; |
||||
packet.temperature = temperature; |
||||
packet.sensor_id = sensor_id; |
||||
packet.quality = quality; |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
|
||||
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; |
||||
#if MAVLINK_CRC_EXTRA |
||||
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
} |
||||
|
||||
/**
|
||||
* @brief Pack a optical_flow_rad message on a channel |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param chan The MAVLink channel this message will be sent over |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
||||
* @param sensor_id Sensor ID |
||||
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
||||
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
||||
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
||||
* @param integrated_xgyro RH rotation around X axis (rad) |
||||
* @param integrated_ygyro RH rotation around Y axis (rad) |
||||
* @param integrated_zgyro RH rotation around Z axis (rad) |
||||
* @param temperature Temperature * 100 in centi-degrees Celsius |
||||
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
||||
* @param time_delta_distance_us Time in microseconds since the distance was sampled. |
||||
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
||||
* @return length of the message in bytes (excluding serial stream start sign) |
||||
*/ |
||||
static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, |
||||
mavlink_message_t* msg, |
||||
uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
||||
_mav_put_uint64_t(buf, 0, time_usec); |
||||
_mav_put_uint32_t(buf, 8, integration_time_us); |
||||
_mav_put_float(buf, 12, integrated_x); |
||||
_mav_put_float(buf, 16, integrated_y); |
||||
_mav_put_float(buf, 20, integrated_xgyro); |
||||
_mav_put_float(buf, 24, integrated_ygyro); |
||||
_mav_put_float(buf, 28, integrated_zgyro); |
||||
_mav_put_uint32_t(buf, 32, time_delta_distance_us); |
||||
_mav_put_float(buf, 36, distance); |
||||
_mav_put_int16_t(buf, 40, temperature); |
||||
_mav_put_uint8_t(buf, 42, sensor_id); |
||||
_mav_put_uint8_t(buf, 43, quality); |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#else |
||||
mavlink_optical_flow_rad_t packet; |
||||
packet.time_usec = time_usec; |
||||
packet.integration_time_us = integration_time_us; |
||||
packet.integrated_x = integrated_x; |
||||
packet.integrated_y = integrated_y; |
||||
packet.integrated_xgyro = integrated_xgyro; |
||||
packet.integrated_ygyro = integrated_ygyro; |
||||
packet.integrated_zgyro = integrated_zgyro; |
||||
packet.time_delta_distance_us = time_delta_distance_us; |
||||
packet.distance = distance; |
||||
packet.temperature = temperature; |
||||
packet.sensor_id = sensor_id; |
||||
packet.quality = quality; |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
|
||||
msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; |
||||
#if MAVLINK_CRC_EXTRA |
||||
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
} |
||||
|
||||
/**
|
||||
* @brief Encode a optical_flow_rad struct |
||||
* |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param optical_flow_rad C-struct to read the message contents from |
||||
*/ |
||||
static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) |
||||
{ |
||||
return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Encode a optical_flow_rad struct on a channel |
||||
* |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param chan The MAVLink channel this message will be sent over |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param optical_flow_rad C-struct to read the message contents from |
||||
*/ |
||||
static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) |
||||
{ |
||||
return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Send a optical_flow_rad message |
||||
* @param chan MAVLink channel to send the message |
||||
* |
||||
* @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
||||
* @param sensor_id Sensor ID |
||||
* @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
||||
* @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
||||
* @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
||||
* @param integrated_xgyro RH rotation around X axis (rad) |
||||
* @param integrated_ygyro RH rotation around Y axis (rad) |
||||
* @param integrated_zgyro RH rotation around Z axis (rad) |
||||
* @param temperature Temperature * 100 in centi-degrees Celsius |
||||
* @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
||||
* @param time_delta_distance_us Time in microseconds since the distance was sampled. |
||||
* @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
||||
*/ |
||||
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS |
||||
|
||||
static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
||||
_mav_put_uint64_t(buf, 0, time_usec); |
||||
_mav_put_uint32_t(buf, 8, integration_time_us); |
||||
_mav_put_float(buf, 12, integrated_x); |
||||
_mav_put_float(buf, 16, integrated_y); |
||||
_mav_put_float(buf, 20, integrated_xgyro); |
||||
_mav_put_float(buf, 24, integrated_ygyro); |
||||
_mav_put_float(buf, 28, integrated_zgyro); |
||||
_mav_put_uint32_t(buf, 32, time_delta_distance_us); |
||||
_mav_put_float(buf, 36, distance); |
||||
_mav_put_int16_t(buf, 40, temperature); |
||||
_mav_put_uint8_t(buf, 42, sensor_id); |
||||
_mav_put_uint8_t(buf, 43, quality); |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
#else |
||||
mavlink_optical_flow_rad_t packet; |
||||
packet.time_usec = time_usec; |
||||
packet.integration_time_us = integration_time_us; |
||||
packet.integrated_x = integrated_x; |
||||
packet.integrated_y = integrated_y; |
||||
packet.integrated_xgyro = integrated_xgyro; |
||||
packet.integrated_ygyro = integrated_ygyro; |
||||
packet.integrated_zgyro = integrated_zgyro; |
||||
packet.time_delta_distance_us = time_delta_distance_us; |
||||
packet.distance = distance; |
||||
packet.temperature = temperature; |
||||
packet.sensor_id = sensor_id; |
||||
packet.quality = quality; |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
#endif |
||||
} |
||||
|
||||
#if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN |
||||
/*
|
||||
This varient of _send() can be used to save stack space by re-using |
||||
memory from the receive buffer. The caller provides a |
||||
mavlink_message_t which is the size of a full mavlink message. This |
||||
is usually the receive buffer for the channel, and allows a reply to an |
||||
incoming message with minimum stack space usage. |
||||
*/ |
||||
static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char *buf = (char *)msgbuf; |
||||
_mav_put_uint64_t(buf, 0, time_usec); |
||||
_mav_put_uint32_t(buf, 8, integration_time_us); |
||||
_mav_put_float(buf, 12, integrated_x); |
||||
_mav_put_float(buf, 16, integrated_y); |
||||
_mav_put_float(buf, 20, integrated_xgyro); |
||||
_mav_put_float(buf, 24, integrated_ygyro); |
||||
_mav_put_float(buf, 28, integrated_zgyro); |
||||
_mav_put_uint32_t(buf, 32, time_delta_distance_us); |
||||
_mav_put_float(buf, 36, distance); |
||||
_mav_put_int16_t(buf, 40, temperature); |
||||
_mav_put_uint8_t(buf, 42, sensor_id); |
||||
_mav_put_uint8_t(buf, 43, quality); |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
#else |
||||
mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf; |
||||
packet->time_usec = time_usec; |
||||
packet->integration_time_us = integration_time_us; |
||||
packet->integrated_x = integrated_x; |
||||
packet->integrated_y = integrated_y; |
||||
packet->integrated_xgyro = integrated_xgyro; |
||||
packet->integrated_ygyro = integrated_ygyro; |
||||
packet->integrated_zgyro = integrated_zgyro; |
||||
packet->time_delta_distance_us = time_delta_distance_us; |
||||
packet->distance = distance; |
||||
packet->temperature = temperature; |
||||
packet->sensor_id = sensor_id; |
||||
packet->quality = quality; |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
#endif |
||||
} |
||||
#endif |
||||
|
||||
#endif |
||||
|
||||
// MESSAGE OPTICAL_FLOW_RAD UNPACKING
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get field time_usec from optical_flow_rad message |
||||
* |
||||
* @return Timestamp (microseconds, synced to UNIX time or since system boot) |
||||
*/ |
||||
static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_uint64_t(msg, 0); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field sensor_id from optical_flow_rad message |
||||
* |
||||
* @return Sensor ID |
||||
*/ |
||||
static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_uint8_t(msg, 42); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integration_time_us from optical_flow_rad message |
||||
* |
||||
* @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
||||
*/ |
||||
static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_uint32_t(msg, 8); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integrated_x from optical_flow_rad message |
||||
* |
||||
* @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 12); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integrated_y from optical_flow_rad message |
||||
* |
||||
* @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 16); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integrated_xgyro from optical_flow_rad message |
||||
* |
||||
* @return RH rotation around X axis (rad) |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 20); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integrated_ygyro from optical_flow_rad message |
||||
* |
||||
* @return RH rotation around Y axis (rad) |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 24); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field integrated_zgyro from optical_flow_rad message |
||||
* |
||||
* @return RH rotation around Z axis (rad) |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 28); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field temperature from optical_flow_rad message |
||||
* |
||||
* @return Temperature * 100 in centi-degrees Celsius |
||||
*/ |
||||
static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_int16_t(msg, 40); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field quality from optical_flow_rad message |
||||
* |
||||
* @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
||||
*/ |
||||
static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_uint8_t(msg, 43); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field time_delta_distance_us from optical_flow_rad message |
||||
* |
||||
* @return Time in microseconds since the distance was sampled. |
||||
*/ |
||||
static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_uint32_t(msg, 32); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field distance from optical_flow_rad message |
||||
* |
||||
* @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
||||
*/ |
||||
static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_float(msg, 36); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Decode a optical_flow_rad message into a struct |
||||
* |
||||
* @param msg The message to decode |
||||
* @param optical_flow_rad C-struct to decode the message contents into |
||||
*/ |
||||
static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP |
||||
optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg); |
||||
optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg); |
||||
optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg); |
||||
optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg); |
||||
optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg); |
||||
optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg); |
||||
optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg); |
||||
optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg); |
||||
optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg); |
||||
optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg); |
||||
optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg); |
||||
optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg); |
||||
#else |
||||
memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
||||
#endif |
||||
} |
@ -0,0 +1,233 @@
@@ -0,0 +1,233 @@
|
||||
// MESSAGE TIMESYNC PACKING
|
||||
|
||||
#define MAVLINK_MSG_ID_TIMESYNC 111 |
||||
|
||||
typedef struct __mavlink_timesync_t |
||||
{ |
||||
int64_t tc1; ///< Time sync timestamp 1
|
||||
int64_t ts1; ///< Time sync timestamp 2
|
||||
} mavlink_timesync_t; |
||||
|
||||
#define MAVLINK_MSG_ID_TIMESYNC_LEN 16 |
||||
#define MAVLINK_MSG_ID_111_LEN 16 |
||||
|
||||
#define MAVLINK_MSG_ID_TIMESYNC_CRC 34 |
||||
#define MAVLINK_MSG_ID_111_CRC 34 |
||||
|
||||
|
||||
|
||||
#define MAVLINK_MESSAGE_INFO_TIMESYNC { \ |
||||
"TIMESYNC", \
|
||||
2, \
|
||||
{ { "tc1", NULL, MAVLINK_TYPE_INT64_T, 0, 0, offsetof(mavlink_timesync_t, tc1) }, \
|
||||
{ "ts1", NULL, MAVLINK_TYPE_INT64_T, 0, 8, offsetof(mavlink_timesync_t, ts1) }, \
|
||||
} \
|
||||
} |
||||
|
||||
|
||||
/**
|
||||
* @brief Pack a timesync message |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param msg The MAVLink message to compress the data into |
||||
* |
||||
* @param tc1 Time sync timestamp 1 |
||||
* @param ts1 Time sync timestamp 2 |
||||
* @return length of the message in bytes (excluding serial stream start sign) |
||||
*/ |
||||
static inline uint16_t mavlink_msg_timesync_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, |
||||
int64_t tc1, int64_t ts1) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_TIMESYNC_LEN]; |
||||
_mav_put_int64_t(buf, 0, tc1); |
||||
_mav_put_int64_t(buf, 8, ts1); |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#else |
||||
mavlink_timesync_t packet; |
||||
packet.tc1 = tc1; |
||||
packet.ts1 = ts1; |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
|
||||
msg->msgid = MAVLINK_MSG_ID_TIMESYNC; |
||||
#if MAVLINK_CRC_EXTRA |
||||
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
} |
||||
|
||||
/**
|
||||
* @brief Pack a timesync message on a channel |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param chan The MAVLink channel this message will be sent over |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param tc1 Time sync timestamp 1 |
||||
* @param ts1 Time sync timestamp 2 |
||||
* @return length of the message in bytes (excluding serial stream start sign) |
||||
*/ |
||||
static inline uint16_t mavlink_msg_timesync_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, |
||||
mavlink_message_t* msg, |
||||
int64_t tc1,int64_t ts1) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_TIMESYNC_LEN]; |
||||
_mav_put_int64_t(buf, 0, tc1); |
||||
_mav_put_int64_t(buf, 8, ts1); |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#else |
||||
mavlink_timesync_t packet; |
||||
packet.tc1 = tc1; |
||||
packet.ts1 = ts1; |
||||
|
||||
memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
|
||||
msg->msgid = MAVLINK_MSG_ID_TIMESYNC; |
||||
#if MAVLINK_CRC_EXTRA |
||||
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
} |
||||
|
||||
/**
|
||||
* @brief Encode a timesync struct |
||||
* |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param timesync C-struct to read the message contents from |
||||
*/ |
||||
static inline uint16_t mavlink_msg_timesync_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_timesync_t* timesync) |
||||
{ |
||||
return mavlink_msg_timesync_pack(system_id, component_id, msg, timesync->tc1, timesync->ts1); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Encode a timesync struct on a channel |
||||
* |
||||
* @param system_id ID of this system |
||||
* @param component_id ID of this component (e.g. 200 for IMU) |
||||
* @param chan The MAVLink channel this message will be sent over |
||||
* @param msg The MAVLink message to compress the data into |
||||
* @param timesync C-struct to read the message contents from |
||||
*/ |
||||
static inline uint16_t mavlink_msg_timesync_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_timesync_t* timesync) |
||||
{ |
||||
return mavlink_msg_timesync_pack_chan(system_id, component_id, chan, msg, timesync->tc1, timesync->ts1); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Send a timesync message |
||||
* @param chan MAVLink channel to send the message |
||||
* |
||||
* @param tc1 Time sync timestamp 1 |
||||
* @param ts1 Time sync timestamp 2 |
||||
*/ |
||||
#ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS |
||||
|
||||
static inline void mavlink_msg_timesync_send(mavlink_channel_t chan, int64_t tc1, int64_t ts1) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char buf[MAVLINK_MSG_ID_TIMESYNC_LEN]; |
||||
_mav_put_int64_t(buf, 0, tc1); |
||||
_mav_put_int64_t(buf, 8, ts1); |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, buf, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, buf, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
#else |
||||
mavlink_timesync_t packet; |
||||
packet.tc1 = tc1; |
||||
packet.ts1 = ts1; |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, (const char *)&packet, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, (const char *)&packet, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
#endif |
||||
} |
||||
|
||||
#if MAVLINK_MSG_ID_TIMESYNC_LEN <= MAVLINK_MAX_PAYLOAD_LEN |
||||
/*
|
||||
This varient of _send() can be used to save stack space by re-using |
||||
memory from the receive buffer. The caller provides a |
||||
mavlink_message_t which is the size of a full mavlink message. This |
||||
is usually the receive buffer for the channel, and allows a reply to an |
||||
incoming message with minimum stack space usage. |
||||
*/ |
||||
static inline void mavlink_msg_timesync_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, int64_t tc1, int64_t ts1) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
||||
char *buf = (char *)msgbuf; |
||||
_mav_put_int64_t(buf, 0, tc1); |
||||
_mav_put_int64_t(buf, 8, ts1); |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, buf, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, buf, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
#else |
||||
mavlink_timesync_t *packet = (mavlink_timesync_t *)msgbuf; |
||||
packet->tc1 = tc1; |
||||
packet->ts1 = ts1; |
||||
|
||||
#if MAVLINK_CRC_EXTRA |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, (const char *)packet, MAVLINK_MSG_ID_TIMESYNC_LEN, MAVLINK_MSG_ID_TIMESYNC_CRC); |
||||
#else |
||||
_mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_TIMESYNC, (const char *)packet, MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
#endif |
||||
} |
||||
#endif |
||||
|
||||
#endif |
||||
|
||||
// MESSAGE TIMESYNC UNPACKING
|
||||
|
||||
|
||||
/**
|
||||
* @brief Get field tc1 from timesync message |
||||
* |
||||
* @return Time sync timestamp 1 |
||||
*/ |
||||
static inline int64_t mavlink_msg_timesync_get_tc1(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_int64_t(msg, 0); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Get field ts1 from timesync message |
||||
* |
||||
* @return Time sync timestamp 2 |
||||
*/ |
||||
static inline int64_t mavlink_msg_timesync_get_ts1(const mavlink_message_t* msg) |
||||
{ |
||||
return _MAV_RETURN_int64_t(msg, 8); |
||||
} |
||||
|
||||
/**
|
||||
* @brief Decode a timesync message into a struct |
||||
* |
||||
* @param msg The message to decode |
||||
* @param timesync C-struct to decode the message contents into |
||||
*/ |
||||
static inline void mavlink_msg_timesync_decode(const mavlink_message_t* msg, mavlink_timesync_t* timesync) |
||||
{ |
||||
#if MAVLINK_NEED_BYTE_SWAP |
||||
timesync->tc1 = mavlink_msg_timesync_get_tc1(msg); |
||||
timesync->ts1 = mavlink_msg_timesync_get_ts1(msg); |
||||
#else |
||||
memcpy(timesync, _MAV_PAYLOAD(msg), MAVLINK_MSG_ID_TIMESYNC_LEN); |
||||
#endif |
||||
} |
Loading…
Reference in new issue