|
|
@ -114,9 +114,6 @@ extern const AP_HAL::HAL& hal; |
|
|
|
#define INIT_GYRO_BIAS_UNCERTAINTY 0.1f |
|
|
|
#define INIT_GYRO_BIAS_UNCERTAINTY 0.1f |
|
|
|
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.3f |
|
|
|
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.3f |
|
|
|
|
|
|
|
|
|
|
|
// altitude of OF and range finder when on ground
|
|
|
|
|
|
|
|
#define RNG_MEAS_ON_GND 0.1f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Define tuning parameters
|
|
|
|
// Define tuning parameters
|
|
|
|
const AP_Param::GroupInfo NavEKF::var_info[] PROGMEM = { |
|
|
|
const AP_Param::GroupInfo NavEKF::var_info[] PROGMEM = { |
|
|
|
|
|
|
|
|
|
|
@ -522,7 +519,7 @@ void NavEKF::ResetHeight(void) |
|
|
|
for (uint8_t i=0; i<=49; i++){ |
|
|
|
for (uint8_t i=0; i<=49; i++){ |
|
|
|
storedStates[i].position.z = -hgtMea; |
|
|
|
storedStates[i].position.z = -hgtMea; |
|
|
|
} |
|
|
|
} |
|
|
|
terrainState = state.position.z + RNG_MEAS_ON_GND; |
|
|
|
terrainState = state.position.z + rngOnGnd; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// this function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
|
|
|
// this function is used to initialise the filter whilst moving, using the AHRS DCM solution
|
|
|
@ -2678,7 +2675,7 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
perf_begin(_perf_OpticalFlowEKF); |
|
|
|
perf_begin(_perf_OpticalFlowEKF); |
|
|
|
|
|
|
|
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
|
|
float heightAboveGndEst = max((terrainState - state.position.z), RNG_MEAS_ON_GND); |
|
|
|
float heightAboveGndEst = max((terrainState - state.position.z), rngOnGnd); |
|
|
|
|
|
|
|
|
|
|
|
// calculate a predicted LOS rate squared
|
|
|
|
// calculate a predicted LOS rate squared
|
|
|
|
float velHorizSq = sq(state.velocity.x) + sq(state.velocity.y); |
|
|
|
float velHorizSq = sq(state.velocity.x) + sq(state.velocity.y); |
|
|
@ -2708,7 +2705,7 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
// fuse range finder data
|
|
|
|
// fuse range finder data
|
|
|
|
if (fuseRngData) { |
|
|
|
if (fuseRngData) { |
|
|
|
// predict range
|
|
|
|
// predict range
|
|
|
|
float predRngMeas = max((terrainState - statesAtRngTime.position[2]),RNG_MEAS_ON_GND) / Tnb_flow.c.z; |
|
|
|
float predRngMeas = max((terrainState - statesAtRngTime.position[2]),rngOnGnd) / Tnb_flow.c.z; |
|
|
|
|
|
|
|
|
|
|
|
// Copy required states to local variable names
|
|
|
|
// Copy required states to local variable names
|
|
|
|
float q0 = statesAtRngTime.quat[0]; // quaternion at optical flow measurement time
|
|
|
|
float q0 = statesAtRngTime.quat[0]; // quaternion at optical flow measurement time
|
|
|
@ -2727,7 +2724,7 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
varInnovRng = (R_RNG + Popt/sq(SK_RNG)); |
|
|
|
varInnovRng = (R_RNG + Popt/sq(SK_RNG)); |
|
|
|
|
|
|
|
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
|
|
terrainState = max(terrainState, statesAtRngTime.position[2] + RNG_MEAS_ON_GND); |
|
|
|
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd); |
|
|
|
|
|
|
|
|
|
|
|
// Calculate the measurement innovation
|
|
|
|
// Calculate the measurement innovation
|
|
|
|
innovRng = predRngMeas - rngMea; |
|
|
|
innovRng = predRngMeas - rngMea; |
|
|
@ -2742,7 +2739,7 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
terrainState -= K_RNG * innovRng; |
|
|
|
terrainState -= K_RNG * innovRng; |
|
|
|
|
|
|
|
|
|
|
|
// constrain the state
|
|
|
|
// constrain the state
|
|
|
|
terrainState = max(terrainState, statesAtRngTime.position[2] + RNG_MEAS_ON_GND); |
|
|
|
terrainState = max(terrainState, statesAtRngTime.position[2] + rngOnGnd); |
|
|
|
|
|
|
|
|
|
|
|
// correct the covariance
|
|
|
|
// correct the covariance
|
|
|
|
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3))); |
|
|
|
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3))); |
|
|
@ -2771,10 +2768,10 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
vel.z = statesAtFlowTime.velocity[2]; |
|
|
|
vel.z = statesAtFlowTime.velocity[2]; |
|
|
|
|
|
|
|
|
|
|
|
// predict range to centre of image
|
|
|
|
// predict range to centre of image
|
|
|
|
float flowRngPred = max((terrainState - statesAtFlowTime.position[2]),RNG_MEAS_ON_GND) / Tnb_flow.c.z; |
|
|
|
float flowRngPred = max((terrainState - statesAtFlowTime.position[2]),rngOnGnd) / Tnb_flow.c.z; |
|
|
|
|
|
|
|
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
|
|
terrainState = max(terrainState, statesAtFlowTime.position[2] + RNG_MEAS_ON_GND); |
|
|
|
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd); |
|
|
|
|
|
|
|
|
|
|
|
// calculate relative velocity in sensor frame
|
|
|
|
// calculate relative velocity in sensor frame
|
|
|
|
relVelSensor = Tnb_flow*vel; |
|
|
|
relVelSensor = Tnb_flow*vel; |
|
|
@ -2836,7 +2833,7 @@ void NavEKF::EstimateTerrainOffset() |
|
|
|
terrainState -= K_OPT * auxFlowObsInnov; |
|
|
|
terrainState -= K_OPT * auxFlowObsInnov; |
|
|
|
|
|
|
|
|
|
|
|
// constrain the state
|
|
|
|
// constrain the state
|
|
|
|
terrainState = max(terrainState, statesAtFlowTime.position[2] + RNG_MEAS_ON_GND); |
|
|
|
terrainState = max(terrainState, statesAtFlowTime.position[2] + rngOnGnd); |
|
|
|
|
|
|
|
|
|
|
|
// correct the covariance
|
|
|
|
// correct the covariance
|
|
|
|
Popt = Popt - K_OPT * H_OPT * Popt; |
|
|
|
Popt = Popt - K_OPT * H_OPT * Popt; |
|
|
@ -2886,11 +2883,11 @@ void NavEKF::FuseOptFlow() |
|
|
|
velNED_local.z = vd; |
|
|
|
velNED_local.z = vd; |
|
|
|
|
|
|
|
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
|
|
float heightAboveGndEst = max((terrainState - pd), RNG_MEAS_ON_GND); |
|
|
|
float heightAboveGndEst = max((terrainState - pd), rngOnGnd); |
|
|
|
// Calculate observation jacobians and Kalman gains
|
|
|
|
// Calculate observation jacobians and Kalman gains
|
|
|
|
if (obsIndex == 0) { |
|
|
|
if (obsIndex == 0) { |
|
|
|
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
|
|
|
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
|
|
|
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),RNG_MEAS_ON_GND,1000.0f); |
|
|
|
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),rngOnGnd,1000.0f); |
|
|
|
|
|
|
|
|
|
|
|
// calculate relative velocity in sensor frame
|
|
|
|
// calculate relative velocity in sensor frame
|
|
|
|
relVelSensor = Tnb_flow*velNED_local; |
|
|
|
relVelSensor = Tnb_flow*velNED_local; |
|
|
@ -3677,7 +3674,7 @@ void NavEKF::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScal |
|
|
|
{ |
|
|
|
{ |
|
|
|
if (PV_AidingMode == AID_RELATIVE) { |
|
|
|
if (PV_AidingMode == AID_RELATIVE) { |
|
|
|
// allow 1.0 rad/sec margin for angular motion
|
|
|
|
// allow 1.0 rad/sec margin for angular motion
|
|
|
|
ekfGndSpdLimit = max((_maxFlowRate - 1.0f), 0.0f) * max((terrainState - state.position[2]), RNG_MEAS_ON_GND); |
|
|
|
ekfGndSpdLimit = max((_maxFlowRate - 1.0f), 0.0f) * max((terrainState - state.position[2]), rngOnGnd); |
|
|
|
// use standard gains up to 5.0 metres height and reduce above that
|
|
|
|
// use standard gains up to 5.0 metres height and reduce above that
|
|
|
|
ekfNavVelGainScaler = 4.0f / max((terrainState - state.position[2]),4.0f); |
|
|
|
ekfNavVelGainScaler = 4.0f / max((terrainState - state.position[2]),4.0f); |
|
|
|
} else { |
|
|
|
} else { |
|
|
@ -3986,7 +3983,7 @@ void NavEKF::ConstrainStates() |
|
|
|
// body magnetic field limit
|
|
|
|
// body magnetic field limit
|
|
|
|
for (uint8_t i=19; i<=21; i++) states[i] = constrain_float(states[i],-0.5f,0.5f); |
|
|
|
for (uint8_t i=19; i<=21; i++) states[i] = constrain_float(states[i],-0.5f,0.5f); |
|
|
|
// constrain the terrain offset state
|
|
|
|
// constrain the terrain offset state
|
|
|
|
terrainState = max(terrainState, state.position.z + RNG_MEAS_ON_GND); |
|
|
|
terrainState = max(terrainState, state.position.z + rngOnGnd); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// update IMU delta angle and delta velocity measurements
|
|
|
|
// update IMU delta angle and delta velocity measurements
|
|
|
@ -4138,7 +4135,7 @@ void NavEKF::readHgtData() |
|
|
|
if (_fusionModeGPS == 3 && _altSource == 1) { |
|
|
|
if (_fusionModeGPS == 3 && _altSource == 1) { |
|
|
|
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) { |
|
|
|
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) { |
|
|
|
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
|
|
|
|
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
|
|
|
|
hgtMea = max(rngMea * Tnb_flow.c.z, RNG_MEAS_ON_GND); |
|
|
|
hgtMea = max(rngMea * Tnb_flow.c.z, rngOnGnd); |
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
statesAtHgtTime = statesAtFlowTime; |
|
|
|
statesAtHgtTime = statesAtFlowTime; |
|
|
|
// calculate offset to baro data that enables baro to be used as a backup
|
|
|
|
// calculate offset to baro data that enables baro to be used as a backup
|
|
|
@ -4146,13 +4143,13 @@ void NavEKF::readHgtData() |
|
|
|
baroHgtOffset = 0.2f * (_baro.get_altitude() + state.position.z) + 0.8f * baroHgtOffset; |
|
|
|
baroHgtOffset = 0.2f * (_baro.get_altitude() + state.position.z) + 0.8f * baroHgtOffset; |
|
|
|
} else { |
|
|
|
} else { |
|
|
|
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
|
|
|
|
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
|
|
|
|
hgtMea = max(_baro.get_altitude() - baroHgtOffset, RNG_MEAS_ON_GND); |
|
|
|
hgtMea = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd); |
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay)); |
|
|
|
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay)); |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
} else { |
|
|
|
// use baro measurement and correct for baro offset
|
|
|
|
// use baro measurement and correct for baro offset
|
|
|
|
hgtMea = _baro.get_altitude() - baroHgtOffset; |
|
|
|
hgtMea = _baro.get_altitude(); |
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
// get states that were stored at the time closest to the measurement time, taking measurement delay into account
|
|
|
|
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay)); |
|
|
|
RecallStates(statesAtHgtTime, (imuSampleTime_ms - msecHgtDelay)); |
|
|
|
} |
|
|
|
} |
|
|
|