Browse Source
this AHRS backend is causing compiler errors with the Arduino build environment on windows. The quaternion AHRS backend is currently not being developed/supported anyway. We can resurrect it if someone wants to start developing it again.master
Andrew Tridgell
13 years ago
3 changed files with 0 additions and 508 deletions
@ -1,413 +0,0 @@
@@ -1,413 +0,0 @@
|
||||
/*
|
||||
AP_AHRS_Quaternion code, based on quaternion code from Jeb Madgwick |
||||
|
||||
See http://www.x-io.co.uk/res/doc/madgwick_internal_report.pdf
|
||||
|
||||
adapted to APM by Andrew Tridgell based on initial idea, |
||||
discussions and prototype from Justin Beech. |
||||
|
||||
This library is free software; you can redistribute it and/or |
||||
modify it under the terms of the GNU Lesser General Public |
||||
License as published by the Free Software Foundation; either |
||||
version 2.1 of the License, or (at your option) any later |
||||
version. |
||||
*/ |
||||
#include <FastSerial.h> |
||||
#include <AP_AHRS.h> |
||||
|
||||
// to keep the code as close to the original as possible, we use these
|
||||
// macros for quaternion access
|
||||
#define SEq_1 q.q1 |
||||
#define SEq_2 q.q2 |
||||
#define SEq_3 q.q3 |
||||
#define SEq_4 q.q4 |
||||
|
||||
// Function to compute one quaternion iteration without magnetometer
|
||||
void AP_AHRS_Quaternion::update_IMU(float deltat, Vector3f &gyro, Vector3f &accel) |
||||
{ |
||||
// Local system variables
|
||||
float norm; // vector norm
|
||||
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion derrivative from gyroscopes elements
|
||||
float f_1, f_2, f_3; // objective function elements
|
||||
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
|
||||
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
|
||||
|
||||
// Axulirary variables to avoid reapeated calcualtions
|
||||
float halfSEq_1 = 0.5f * SEq_1; |
||||
float halfSEq_2 = 0.5f * SEq_2; |
||||
float halfSEq_3 = 0.5f * SEq_3; |
||||
float halfSEq_4 = 0.5f * SEq_4; |
||||
float twoSEq_1 = 2.0f * SEq_1; |
||||
float twoSEq_2 = 2.0f * SEq_2; |
||||
float twoSEq_3 = 2.0f * SEq_3; |
||||
|
||||
// estimated direction of the gyroscope error (radians)
|
||||
Vector3f w_err; |
||||
|
||||
// normalise accelerometer vector
|
||||
accel.normalize(); |
||||
if (accel.is_inf()) { |
||||
// discard this data point
|
||||
renorm_range_count++; |
||||
return; |
||||
} |
||||
|
||||
// Compute the objective function and Jacobian
|
||||
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; |
||||
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; |
||||
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; |
||||
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
|
||||
J_12or23 = 2.0f * SEq_4; |
||||
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
|
||||
J_14or21 = twoSEq_2; |
||||
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
|
||||
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
|
||||
|
||||
// Compute the gradient (matrix multiplication)
|
||||
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1; |
||||
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3; |
||||
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1; |
||||
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2; |
||||
|
||||
// Normalise the gradient
|
||||
norm = 1.0/safe_sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); |
||||
if (isinf(norm)) { |
||||
// we can't do an update - discard this data point and
|
||||
// hope the next one is better
|
||||
renorm_range_count++; |
||||
return; |
||||
} |
||||
SEqHatDot_1 *= norm; |
||||
SEqHatDot_2 *= norm; |
||||
SEqHatDot_3 *= norm; |
||||
SEqHatDot_4 *= norm; |
||||
|
||||
// Compute the quaternion derrivative measured by gyroscopes
|
||||
SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; |
||||
SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; |
||||
SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; |
||||
SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; |
||||
|
||||
// Compute then integrate the estimated quaternion derrivative
|
||||
SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; |
||||
SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; |
||||
SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; |
||||
SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; |
||||
|
||||
// Normalise quaternion
|
||||
norm = 1.0/safe_sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); |
||||
if (isinf(norm)) { |
||||
// our quaternion is bad! Reset based on roll/pitch/yaw
|
||||
// and hope for the best ...
|
||||
renorm_blowup_count++; |
||||
q.from_euler(roll, pitch, yaw); |
||||
return; |
||||
} |
||||
SEq_1 *= norm; |
||||
SEq_2 *= norm; |
||||
SEq_3 *= norm; |
||||
SEq_4 *= norm; |
||||
} |
||||
|
||||
|
||||
// Function to compute one quaternion iteration including magnetometer
|
||||
void AP_AHRS_Quaternion::update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag) |
||||
{ |
||||
// local system variables
|
||||
float norm; // vector norm
|
||||
float SEqDot_omega_1, SEqDot_omega_2, SEqDot_omega_3, SEqDot_omega_4; // quaternion rate from gyroscopes elements
|
||||
float f_1, f_2, f_3, f_4, f_5, f_6; // objective function elements
|
||||
float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33, // objective function Jacobian elements
|
||||
J_41, J_42, J_43, J_44, J_51, J_52, J_53, J_54, J_61, J_62, J_63, J_64; //
|
||||
float SEqHatDot_1, SEqHatDot_2, SEqHatDot_3, SEqHatDot_4; // estimated direction of the gyroscope error
|
||||
|
||||
// computed flux in the earth frame
|
||||
Vector3f flux; |
||||
|
||||
// estimated direction of the gyroscope error (radians)
|
||||
Vector3f w_err; |
||||
|
||||
// normalise accelerometer vector
|
||||
accel.normalize(); |
||||
if (accel.is_inf()) { |
||||
// discard this data point
|
||||
renorm_range_count++; |
||||
return; |
||||
} |
||||
|
||||
// normalise the magnetometer measurement
|
||||
mag.normalize(); |
||||
if (mag.is_inf()) { |
||||
// discard this data point
|
||||
renorm_range_count++; |
||||
return; |
||||
} |
||||
|
||||
// auxiliary variables to avoid repeated calculations
|
||||
float halfSEq_1 = 0.5f * SEq_1; |
||||
float halfSEq_2 = 0.5f * SEq_2; |
||||
float halfSEq_3 = 0.5f * SEq_3; |
||||
float halfSEq_4 = 0.5f * SEq_4; |
||||
float twoSEq_1 = 2.0f * SEq_1; |
||||
float twoSEq_2 = 2.0f * SEq_2; |
||||
float twoSEq_3 = 2.0f * SEq_3; |
||||
float twoSEq_4 = 2.0f * SEq_4; |
||||
float twob_x = 2.0f * b_x; |
||||
float twob_z = 2.0f * b_z; |
||||
float twob_xSEq_1 = 2.0f * b_x * SEq_1; |
||||
float twob_xSEq_2 = 2.0f * b_x * SEq_2; |
||||
float twob_xSEq_3 = 2.0f * b_x * SEq_3; |
||||
float twob_xSEq_4 = 2.0f * b_x * SEq_4; |
||||
float twob_zSEq_1 = 2.0f * b_z * SEq_1; |
||||
float twob_zSEq_2 = 2.0f * b_z * SEq_2; |
||||
float twob_zSEq_3 = 2.0f * b_z * SEq_3; |
||||
float twob_zSEq_4 = 2.0f * b_z * SEq_4; |
||||
float SEq_1SEq_2; |
||||
float SEq_1SEq_3 = SEq_1 * SEq_3; |
||||
float SEq_1SEq_4; |
||||
float SEq_2SEq_3; |
||||
float SEq_2SEq_4 = SEq_2 * SEq_4; |
||||
float SEq_3SEq_4; |
||||
Vector3f twom = mag * 2.0; |
||||
|
||||
// compute the objective function and Jacobian
|
||||
f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - accel.x; |
||||
f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - accel.y; |
||||
f_3 = 1.0f - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - accel.z; |
||||
f_4 = twob_x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twob_z * (SEq_2SEq_4 - SEq_1SEq_3) - mag.x; |
||||
f_5 = twob_x * (SEq_2 * SEq_3 - SEq_1 * SEq_4) + twob_z * (SEq_1 * SEq_2 + SEq_3 * SEq_4) - mag.y; |
||||
f_6 = twob_x * (SEq_1SEq_3 + SEq_2SEq_4) + twob_z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3) - mag.z; |
||||
J_11or24 = twoSEq_3; // J_11 negated in matrix multiplication
|
||||
J_12or23 = 2.0f * SEq_4; |
||||
J_13or22 = twoSEq_1; // J_12 negated in matrix multiplication
|
||||
J_14or21 = twoSEq_2; |
||||
J_32 = 2.0f * J_14or21; // negated in matrix multiplication
|
||||
J_33 = 2.0f * J_11or24; // negated in matrix multiplication
|
||||
J_41 = twob_zSEq_3; // negated in matrix multiplication
|
||||
J_42 = twob_zSEq_4; |
||||
J_43 = 2.0f * twob_xSEq_3 + twob_zSEq_1; // negated in matrix multiplication
|
||||
J_44 = 2.0f * twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||||
J_51 = twob_xSEq_4 - twob_zSEq_2; // negated in matrix multiplication
|
||||
J_52 = twob_xSEq_3 + twob_zSEq_1; |
||||
J_53 = twob_xSEq_2 + twob_zSEq_4; |
||||
J_54 = twob_xSEq_1 - twob_zSEq_3; // negated in matrix multiplication
|
||||
J_61 = twob_xSEq_3; |
||||
J_62 = twob_xSEq_4 - 2.0f * twob_zSEq_2; |
||||
J_63 = twob_xSEq_1 - 2.0f * twob_zSEq_3; |
||||
J_64 = twob_xSEq_2; |
||||
|
||||
// compute the gradient (matrix multiplication)
|
||||
SEqHatDot_1 = J_14or21 * f_2 - J_11or24 * f_1 - J_41 * f_4 - J_51 * f_5 + J_61 * f_6; |
||||
SEqHatDot_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3 + J_42 * f_4 + J_52 * f_5 + J_62 * f_6; |
||||
SEqHatDot_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1 - J_43 * f_4 + J_53 * f_5 + J_63 * f_6; |
||||
SEqHatDot_4 = J_14or21 * f_1 + J_11or24 * f_2 - J_44 * f_4 - J_54 * f_5 + J_64 * f_6; |
||||
|
||||
// normalise the gradient to estimate direction of the gyroscope error
|
||||
norm = 1.0 / safe_sqrt(SEqHatDot_1 * SEqHatDot_1 + SEqHatDot_2 * SEqHatDot_2 + SEqHatDot_3 * SEqHatDot_3 + SEqHatDot_4 * SEqHatDot_4); |
||||
if (isinf(norm)) { |
||||
// discard this data point
|
||||
renorm_range_count++; |
||||
return; |
||||
} |
||||
SEqHatDot_1 *= norm; |
||||
SEqHatDot_2 *= norm; |
||||
SEqHatDot_3 *= norm; |
||||
SEqHatDot_4 *= norm; |
||||
|
||||
// compute angular estimated direction of the gyroscope error
|
||||
w_err.x = twoSEq_1 * SEqHatDot_2 - twoSEq_2 * SEqHatDot_1 - twoSEq_3 * SEqHatDot_4 + twoSEq_4 * SEqHatDot_3; |
||||
w_err.y = twoSEq_1 * SEqHatDot_3 + twoSEq_2 * SEqHatDot_4 - twoSEq_3 * SEqHatDot_1 - twoSEq_4 * SEqHatDot_2; |
||||
w_err.z = twoSEq_1 * SEqHatDot_4 - twoSEq_2 * SEqHatDot_3 + twoSEq_3 * SEqHatDot_2 - twoSEq_4 * SEqHatDot_1; |
||||
|
||||
// keep track of the error rates
|
||||
_error_rp_sum += 0.5*(fabs(w_err.x) + fabs(w_err.y)); |
||||
_error_yaw_sum += fabs(w_err.z); |
||||
_error_rp_count++; |
||||
_error_yaw_count++; |
||||
|
||||
// compute the gyroscope bias delta
|
||||
Vector3f drift_delta = w_err * (deltat * zeta); |
||||
|
||||
// don't allow the drift rate to be exceeded. This prevents a
|
||||
// sudden drift change coming from a outage in the compass
|
||||
float max_change = _gyro_drift_limit * deltat; |
||||
drift_delta.x = constrain(drift_delta.x, -max_change, max_change); |
||||
drift_delta.y = constrain(drift_delta.y, -max_change, max_change); |
||||
drift_delta.z = constrain(drift_delta.z, -max_change, max_change); |
||||
gyro_bias += drift_delta; |
||||
|
||||
// correct the gyro reading for drift
|
||||
gyro -= gyro_bias; |
||||
|
||||
// compute the quaternion rate measured by gyroscopes
|
||||
SEqDot_omega_1 = -halfSEq_2 * gyro.x - halfSEq_3 * gyro.y - halfSEq_4 * gyro.z; |
||||
SEqDot_omega_2 = halfSEq_1 * gyro.x + halfSEq_3 * gyro.z - halfSEq_4 * gyro.y; |
||||
SEqDot_omega_3 = halfSEq_1 * gyro.y - halfSEq_2 * gyro.z + halfSEq_4 * gyro.x; |
||||
SEqDot_omega_4 = halfSEq_1 * gyro.z + halfSEq_2 * gyro.y - halfSEq_3 * gyro.x; |
||||
|
||||
// compute then integrate the estimated quaternion rate
|
||||
SEq_1 += (SEqDot_omega_1 - (beta * SEqHatDot_1)) * deltat; |
||||
SEq_2 += (SEqDot_omega_2 - (beta * SEqHatDot_2)) * deltat; |
||||
SEq_3 += (SEqDot_omega_3 - (beta * SEqHatDot_3)) * deltat; |
||||
SEq_4 += (SEqDot_omega_4 - (beta * SEqHatDot_4)) * deltat; |
||||
|
||||
// normalise quaternion
|
||||
norm = 1.0/safe_sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4); |
||||
if (isinf(norm)) { |
||||
// our quaternion is bad! Reset based on roll/pitch/yaw
|
||||
// and hope for the best ...
|
||||
renorm_blowup_count++; |
||||
q.from_euler(roll, pitch, yaw); |
||||
return; |
||||
} |
||||
SEq_1 *= norm; |
||||
SEq_2 *= norm; |
||||
SEq_3 *= norm; |
||||
SEq_4 *= norm; |
||||
|
||||
// compute flux in the earth frame
|
||||
// recompute axulirary variables
|
||||
SEq_1SEq_2 = SEq_1 * SEq_2; |
||||
SEq_1SEq_3 = SEq_1 * SEq_3; |
||||
SEq_1SEq_4 = SEq_1 * SEq_4; |
||||
SEq_3SEq_4 = SEq_3 * SEq_4; |
||||
SEq_2SEq_3 = SEq_2 * SEq_3; |
||||
SEq_2SEq_4 = SEq_2 * SEq_4; |
||||
flux.x = twom.x * (0.5f - SEq_3 * SEq_3 - SEq_4 * SEq_4) + twom.y * (SEq_2SEq_3 - SEq_1SEq_4) + twom.z * (SEq_2SEq_4 + SEq_1SEq_3); |
||||
flux.y = twom.x * (SEq_2SEq_3 + SEq_1SEq_4) + twom.y * (0.5f - SEq_2 * SEq_2 - SEq_4 * SEq_4) + twom.z * (SEq_3SEq_4 - SEq_1SEq_2); |
||||
flux.z = twom.x * (SEq_2SEq_4 - SEq_1SEq_3) + twom.y * (SEq_3SEq_4 + SEq_1SEq_2) + twom.z * (0.5f - SEq_2 * SEq_2 - SEq_3 * SEq_3); |
||||
|
||||
// normalise the flux vector to have only components in the x and z
|
||||
b_x = sqrt((flux.x * flux.x) + (flux.y * flux.y)); |
||||
b_z = flux.z; |
||||
} |
||||
|
||||
|
||||
// Function to compute one quaternion iteration
|
||||
void AP_AHRS_Quaternion::update(void) |
||||
{ |
||||
Vector3f gyro, accel; |
||||
float deltat; |
||||
|
||||
_imu->update(); |
||||
|
||||
deltat = _imu->get_delta_time(); |
||||
if (deltat > 1.0) { |
||||
// if we stop updating for 1s, we should discard this
|
||||
// input data. This can happen if you are running the
|
||||
// code under a debugger, and using this data point
|
||||
// will just throw off your attitude by a huge amount
|
||||
return; |
||||
} |
||||
|
||||
if (!_have_initial_yaw && _compass && |
||||
_compass->use_for_yaw()) { |
||||
// setup the quaternion with initial compass yaw
|
||||
q.from_euler(0, 0, _compass->calculate_heading(0,0)); |
||||
_have_initial_yaw = true; |
||||
_compass_last_update = _compass->last_update; |
||||
gyro_bias.zero(); |
||||
} |
||||
|
||||
// get current IMU state
|
||||
gyro = _imu->get_gyro(); |
||||
|
||||
// the quaternion system uses opposite sign for accel
|
||||
accel = - _imu->get_accel(); |
||||
|
||||
if (_fly_forward && _gps && _gps->status() == GPS::GPS_OK) { |
||||
// compensate for centripetal acceleration
|
||||
float veloc; |
||||
veloc = _gps->ground_speed * 0.01; |
||||
// be careful of the signs in this calculation. the
|
||||
// quaternion system uses different signs than the
|
||||
// rest of APM
|
||||
accel.y += (gyro.z - gyro_bias.z) * veloc; |
||||
accel.z -= (gyro.y - gyro_bias.y) * veloc; |
||||
} |
||||
|
||||
if (_compass != NULL && _compass->use_for_yaw()) { |
||||
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, _compass->mag_z); |
||||
update_MARG(deltat, gyro, accel, mag); |
||||
} else { |
||||
// step the quaternion solution using just gyros and accels
|
||||
gyro -= gyro_bias; |
||||
update_IMU(deltat, gyro, accel); |
||||
} |
||||
|
||||
#ifdef DESKTOP_BUILD |
||||
if (q.is_nan()) { |
||||
SITL_debug("QUAT NAN: deltat=%f roll=%f pitch=%f yaw=%f q=[%f %f %f %f] a=[%f %f %f] g=(%f %f %f)\n", |
||||
deltat, roll, pitch, yaw, |
||||
q.q1, q.q2, q.q3, q.q4, |
||||
accel.x, accel.y, accel.z, |
||||
gyro.x, gyro.y, gyro.z); |
||||
} |
||||
#endif |
||||
|
||||
// keep the corrected gyro for reporting
|
||||
_gyro_corrected = gyro; |
||||
|
||||
// calculate our euler angles for high level control and navigation
|
||||
q.to_euler(&roll, &pitch, &yaw); |
||||
|
||||
// the code above assumes zero magnetic declination, so offset
|
||||
// the yaw here
|
||||
if (_compass != NULL) { |
||||
yaw += _compass->get_declination(); |
||||
} |
||||
|
||||
// and integer Eulers
|
||||
roll_sensor = 100 * ToDeg(roll); |
||||
pitch_sensor = 100 * ToDeg(pitch); |
||||
yaw_sensor = 100 * ToDeg(yaw); |
||||
if (yaw_sensor < 0) { |
||||
yaw_sensor += 36000; |
||||
} |
||||
|
||||
} |
||||
|
||||
/* reporting of Quaternion state for MAVLink */ |
||||
|
||||
// average error_roll_pitch since last call
|
||||
float AP_AHRS_Quaternion::get_error_rp(void) |
||||
{ |
||||
if (_error_rp_count == 0) { |
||||
// this happens when telemetry is setup on two
|
||||
// serial ports
|
||||
return _error_rp_last; |
||||
} |
||||
_error_rp_last = _error_rp_sum / _error_rp_count; |
||||
_error_rp_sum = 0; |
||||
_error_rp_count = 0; |
||||
return _error_rp_last; |
||||
} |
||||
|
||||
// average error_yaw since last call
|
||||
float AP_AHRS_Quaternion::get_error_yaw(void) |
||||
{ |
||||
if (_error_yaw_count == 0) { |
||||
// this happens when telemetry is setup on two
|
||||
// serial ports
|
||||
return _error_yaw_last; |
||||
} |
||||
_error_yaw_last = _error_yaw_sum / _error_yaw_count; |
||||
_error_yaw_sum = 0; |
||||
_error_yaw_count = 0; |
||||
return _error_yaw_last; |
||||
} |
||||
|
||||
// reset attitude system
|
||||
void AP_AHRS_Quaternion::reset(bool recover_eulers) |
||||
{ |
||||
if (recover_eulers) { |
||||
q.from_euler(roll, pitch, yaw); |
||||
} else { |
||||
q(1, 0, 0, 0); |
||||
} |
||||
gyro_bias.zero(); |
||||
|
||||
// reference direction of flux in earth frame
|
||||
b_x = 0; |
||||
b_z = -1; |
||||
} |
@ -1,94 +0,0 @@
@@ -1,94 +0,0 @@
|
||||
#ifndef AP_Quaternion_h |
||||
#define AP_Quaternion_h |
||||
|
||||
#include <AP_Math.h> |
||||
#include <inttypes.h> |
||||
#include <AP_Compass.h> |
||||
#include <AP_GPS.h> |
||||
#include <AP_IMU.h> |
||||
|
||||
#if defined(ARDUINO) && ARDUINO >= 100 |
||||
#include "Arduino.h" |
||||
#else |
||||
#include "WProgram.h" |
||||
#endif |
||||
|
||||
class AP_AHRS_Quaternion : public AP_AHRS |
||||
{ |
||||
public: |
||||
// Constructor
|
||||
AP_AHRS_Quaternion(IMU *imu, GPS *&gps) : AP_AHRS(imu, gps) |
||||
{ |
||||
// scaled gyro drift limits
|
||||
beta = sqrt(3.0f / 4.0f) * gyroMeasError; |
||||
zeta = sqrt(3.0f / 4.0f) * _gyro_drift_limit; |
||||
|
||||
// reset attitude
|
||||
reset(); |
||||
} |
||||
|
||||
// Methods
|
||||
void update(void); |
||||
void reset(bool recover_eulers=false); |
||||
|
||||
// get corrected gyro vector
|
||||
Vector3f get_gyro(void) { |
||||
// notice the sign reversals here
|
||||
return Vector3f(_gyro_corrected.x, _gyro_corrected.y, _gyro_corrected.z); |
||||
} |
||||
|
||||
Vector3f get_gyro_drift(void) { |
||||
// notice the sign reversals here. The quaternion
|
||||
// system uses a -ve gyro bias, DCM uses a +ve
|
||||
return Vector3f(-gyro_bias.x, -gyro_bias.y, -gyro_bias.z); |
||||
} |
||||
|
||||
float get_error_rp(void); |
||||
float get_error_yaw(void); |
||||
|
||||
// convert quaternion to a DCM matrix, used by compass
|
||||
// null offsets code
|
||||
Matrix3f get_dcm_matrix(void) { |
||||
Matrix3f ret; |
||||
q.rotation_matrix(ret); |
||||
return ret; |
||||
} |
||||
|
||||
private: |
||||
void update_IMU(float deltat, Vector3f &gyro, Vector3f &accel); |
||||
void update_MARG(float deltat, Vector3f &gyro, Vector3f &accel, Vector3f &mag); |
||||
|
||||
// Methods
|
||||
void accel_adjust(void); |
||||
|
||||
// maximum gyroscope measurement error in rad/s (set to 7 degrees/second)
|
||||
static const float gyroMeasError = 20.0 * (M_PI/180.0); |
||||
|
||||
// scaled tuning constants
|
||||
float beta; |
||||
float zeta; |
||||
|
||||
// quaternion elements
|
||||
Quaternion q; |
||||
|
||||
// magnetic flux estimates. These are used for the automatic
|
||||
// magnetometer calibration
|
||||
float b_x; |
||||
float b_z; |
||||
|
||||
// estimate gyroscope biases error
|
||||
Vector3f gyro_bias; |
||||
|
||||
// the current corrected gyro vector
|
||||
Vector3f _gyro_corrected; |
||||
|
||||
// estimate of error
|
||||
float _error_rp_sum; |
||||
uint16_t _error_rp_count; |
||||
float _error_rp_last; |
||||
float _error_yaw_sum; |
||||
uint16_t _error_yaw_count; |
||||
float _error_yaw_last; |
||||
}; |
||||
|
||||
#endif |
Loading…
Reference in new issue