@ -13,13 +13,9 @@ void init_pids()
@@ -13,13 +13,9 @@ void init_pids()
void output_stabilize()
{
float roll_error, pitch_error;
int max_out;
Vector3f omega = dcm.get_gyro();
/*testing code:*/
//pitch_sensor = roll_sensor = 0; // testing only
//stabilize_rate_roll_pitch = (float)rc_6.control_in / 1000;
//init_pids();
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
@ -55,7 +51,8 @@ void output_stabilize()
@@ -55,7 +51,8 @@ void output_stabilize()
// Limit dampening to be equal to propotional term for symmetry
rc_1.servo_out -= constrain(roll_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15°
rc_2.servo_out -= constrain(pitch_dampener, -max_stabilize_dampener, max_stabilize_dampener); // +- 15°
rc_4.servo_out -= constrain(yaw_dampener, -max_yaw_dampener, max_yaw_dampener); // +- 15°
rc_4.servo_out -= constrain(yaw_dampener, -max_yaw_dampener, max_yaw_dampener);
//Serial.printf(" yaw out: %d, d: %d", (int)rc_4.angle_to_pwm(), yaw_dampener);
@ -84,9 +81,9 @@ void output_rate_control()
@@ -84,9 +81,9 @@ void output_rate_control()
//Serial.print((Omega[0] * 5729.57795 * stabilize_rate_roll_pitch), 3);
// Limit output
rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_1.servo_out = constrain(rc_1.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_2.servo_out = constrain(rc_2.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
}
@ -105,7 +102,7 @@ void reset_I(void)
@@ -105,7 +102,7 @@ void reset_I(void)
void set_servos_4(void)
{
static byte num;
//motor_armed = false;
// Quadcopter mix
if (motor_armed == true) {
int out_min = rc_3.radio_min;
@ -118,7 +115,7 @@ void set_servos_4(void)
@@ -118,7 +115,7 @@ void set_servos_4(void)
//Serial.printf("out: %d %d %d %d\t\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
// creates the radio_out anf pwm_out values
// creates the radio_out and pwm_out values
rc_1.calc_pwm();
rc_2.calc_pwm();
rc_3.calc_pwm();
@ -140,6 +137,7 @@ void set_servos_4(void)
@@ -140,6 +137,7 @@ void set_servos_4(void)
motor_out[FRONT] = rc_3.radio_out + roll_out + pitch_out;
motor_out[BACK] = rc_3.radio_out - roll_out - pitch_out;
}
//Serial.printf("\tb4: %d %d %d %d ", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
motor_out[RIGHT] += rc_4.pwm_out;
@ -160,15 +158,23 @@ void set_servos_4(void)
@@ -160,15 +158,23 @@ void set_servos_4(void)
int f_out = ((long)(motor_out[FRONT] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
int b_out = ((long)(motor_out[BACK] - rc_3.radio_min) * 100) / (long)(rc_3.radio_max - rc_3.radio_min);
//*/
//~ #*set_servos_4: 398, -39 38 38 -36
/*
/* debugging and dynamic kP
num++;
if (num > 50){
num = 0;
Serial.printf("control_in: %d ", rc_3.control_in);
Serial.printf(" servo: %d %d %d %d\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
Serial.printf(" pwm: %d %d %d %d\n", r_out, l_out, f_out, b_out);
//Serial.printf("control_in: %d ", rc_3.control_in);
//Serial.printf(" servo: %d %d %d %d\t", rc_1.servo_out, rc_2.servo_out, rc_3.servo_out, rc_4.servo_out);
//Serial.printf(" cwm: %d %d %d %d, %d\t", rc_1.pwm_out, rc_2.pwm_out, rc_3.pwm_out, rc_4.pwm_out, rc_3.radio_out);
//Serial.printf(" pwm: %d %d %d %d\n", r_out, l_out, f_out, b_out);
//Serial.printf(" pwm: %d %d %d %d\n", motor_out[RIGHT], motor_out[LEFT], motor_out[FRONT], motor_out[BACK]);
pid_stabilize_roll.kP((float)rc_6.control_in / 1000);
stabilize_rate_roll_pitch = pid_stabilize_roll.kP() *.24;
init_pids();
Serial.print("kP: ");
Serial.println(pid_stabilize_roll.kP(),3);
}
//*/
@ -222,9 +228,3 @@ void set_servos_4(void)
@@ -222,9 +228,3 @@ void set_servos_4(void)
rc_4.control_in = ToDeg(yaw);
}
}
void demo_servos(byte i) {
// nothing to do
}