3 changed files with 204 additions and 181 deletions
@ -0,0 +1,204 @@
@@ -0,0 +1,204 @@
|
||||
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
||||
|
||||
// Traditional helicopter variables and functions |
||||
|
||||
#if FRAME_CONFIG == HELI_FRAME |
||||
|
||||
#ifndef HELI_DYNAMIC_FLIGHT_SPEED_MIN |
||||
#define HELI_DYNAMIC_FLIGHT_SPEED_MIN 100 // we are in "dynamic flight" when the speed is over 1m/s for 2 seconds |
||||
#endif |
||||
|
||||
// counter to control dynamic flight profile |
||||
static int8_t heli_dynamic_flight_counter; |
||||
|
||||
// Tradheli flags |
||||
static struct { |
||||
uint8_t dynamic_flight : 1; // 0 // true if we are moving at a significant speed (used to turn on/off leaky I terms) |
||||
} heli_flags; |
||||
|
||||
// heli_check_dynamic_flight - updates the dynamic_flight flag based on our horizontal velocity |
||||
// should be called at 50hz |
||||
static void check_dynamic_flight(void) |
||||
{ |
||||
if (!motors.armed() || throttle_mode == THROTTLE_LAND || !motors.motor_runup_complete) { |
||||
heli_dynamic_flight_counter = 0; |
||||
heli_flags.dynamic_flight = false; |
||||
return; |
||||
} |
||||
|
||||
bool moving = false; |
||||
|
||||
// with GPS lock use inertial nav to determine if we are moving |
||||
if (GPS_ok()) { |
||||
// get horizontal velocity |
||||
float velocity = inertial_nav.get_velocity_xy(); |
||||
moving = (velocity >= HELI_DYNAMIC_FLIGHT_SPEED_MIN); |
||||
}else{ |
||||
// with no GPS lock base it on throttle and forward lean angle |
||||
moving = (g.rc_3.servo_out > 800 || ahrs.pitch_sensor < -1500); |
||||
} |
||||
|
||||
if (moving) { |
||||
// if moving for 2 seconds, set the dynamic flight flag |
||||
if (!heli_flags.dynamic_flight) { |
||||
heli_dynamic_flight_counter++; |
||||
if (heli_dynamic_flight_counter >= 100) { |
||||
heli_flags.dynamic_flight = true; |
||||
heli_dynamic_flight_counter = 100; |
||||
} |
||||
} |
||||
}else{ |
||||
// if not moving for 2 seconds, clear the dynamic flight flag |
||||
if (heli_flags.dynamic_flight) { |
||||
if (heli_dynamic_flight_counter > 0) { |
||||
heli_dynamic_flight_counter--; |
||||
}else{ |
||||
heli_flags.dynamic_flight = false; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
// init_rate_controllers - set-up filters for rate controller inputs |
||||
void init_rate_controllers() |
||||
{ |
||||
// initalise low pass filters on rate controller inputs |
||||
// 1st parameter is time_step, 2nd parameter is time_constant |
||||
// rate_roll_filter.set_cutoff_frequency(0.01f, 0.1f); |
||||
// rate_pitch_filter.set_cutoff_frequency(0.01f, 0.1f); |
||||
} |
||||
|
||||
static void heli_integrated_swash_controller(int32_t target_roll_rate, int32_t target_pitch_rate) |
||||
{ |
||||
int32_t roll_p, roll_i, roll_d, roll_ff; // used to capture pid values for logging |
||||
int32_t pitch_p, pitch_i, pitch_d, pitch_ff; |
||||
int32_t current_roll_rate, current_pitch_rate; // this iteration's rate |
||||
int32_t roll_rate_error, pitch_rate_error; // simply target_rate - current_rate |
||||
int32_t roll_output, pitch_output; // output from pid controller |
||||
static bool roll_pid_saturated, pitch_pid_saturated; // tracker from last loop if the PID was saturated |
||||
|
||||
current_roll_rate = (omega.x * DEGX100); // get current roll rate |
||||
current_pitch_rate = (omega.y * DEGX100); // get current pitch rate |
||||
|
||||
roll_rate_error = target_roll_rate - current_roll_rate; |
||||
pitch_rate_error = target_pitch_rate - current_pitch_rate; |
||||
|
||||
roll_p = g.pid_rate_roll.get_p(roll_rate_error); |
||||
pitch_p = g.pid_rate_pitch.get_p(pitch_rate_error); |
||||
|
||||
if (roll_pid_saturated){ |
||||
roll_i = g.pid_rate_roll.get_integrator(); // Locked Integrator due to PID saturation on previous cycle |
||||
} else { |
||||
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim |
||||
if (target_roll_rate > -50 && target_roll_rate < 50){ // Frozen at high rates |
||||
roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt); |
||||
} else { |
||||
roll_i = g.pid_rate_roll.get_integrator(); |
||||
} |
||||
} else { |
||||
if (heli_flags.dynamic_flight){ |
||||
roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt); |
||||
} else { |
||||
roll_i = g.pid_rate_roll.get_leaky_i(roll_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); |
||||
} |
||||
} |
||||
} |
||||
|
||||
if (pitch_pid_saturated){ |
||||
pitch_i = g.pid_rate_pitch.get_integrator(); // Locked Integrator due to PID saturation on previous cycle |
||||
} else { |
||||
if (motors.flybar_mode == 1) { // Mechanical Flybars get regular integral for rate auto trim |
||||
if (target_pitch_rate > -50 && target_pitch_rate < 50){ // Frozen at high rates |
||||
pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt); |
||||
} else { |
||||
pitch_i = g.pid_rate_pitch.get_integrator(); |
||||
} |
||||
} else { |
||||
if (heli_flags.dynamic_flight){ |
||||
pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt); |
||||
} else { |
||||
pitch_i = g.pid_rate_pitch.get_leaky_i(pitch_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE); |
||||
} |
||||
} |
||||
} |
||||
|
||||
roll_d = g.pid_rate_roll.get_d(target_roll_rate, G_Dt); |
||||
pitch_d = g.pid_rate_pitch.get_d(target_pitch_rate, G_Dt); |
||||
|
||||
roll_ff = g.heli_roll_ff * target_roll_rate; |
||||
pitch_ff = g.heli_pitch_ff * target_pitch_rate; |
||||
|
||||
// Joly, I think your PC and CC code goes here |
||||
|
||||
roll_output = roll_p + roll_i + roll_d + roll_ff; |
||||
pitch_output = pitch_p + pitch_i + pitch_d + pitch_ff; |
||||
|
||||
if (labs(roll_output) > 4500){ |
||||
roll_output = constrain_int32(roll_output, -4500, 4500); // constrain output |
||||
roll_pid_saturated = true; // freeze integrator next cycle |
||||
} else { |
||||
roll_pid_saturated = false; // unfreeze integrator |
||||
} |
||||
|
||||
if (labs(pitch_output) > 4500){ |
||||
pitch_output = constrain_int32(pitch_output, -4500, 4500); // constrain output |
||||
pitch_pid_saturated = true; // freeze integrator next cycle |
||||
} else { |
||||
pitch_pid_saturated = false; // unfreeze integrator |
||||
} |
||||
|
||||
g.rc_1.servo_out = roll_output; |
||||
g.rc_2.servo_out = pitch_output; |
||||
} |
||||
|
||||
static int16_t |
||||
get_heli_rate_yaw(int32_t target_rate) |
||||
{ |
||||
int32_t p,i,d,ff; // used to capture pid values for logging |
||||
int32_t current_rate; // this iteration's rate |
||||
int32_t rate_error; |
||||
int32_t output; |
||||
static bool pid_saturated; // tracker from last loop if the PID was saturated |
||||
|
||||
current_rate = (omega.z * DEGX100); // get current rate |
||||
|
||||
// rate control |
||||
rate_error = target_rate - current_rate; |
||||
|
||||
// separately calculate p, i, d values for logging |
||||
p = g.pid_rate_yaw.get_p(rate_error); |
||||
|
||||
if (pid_saturated){ |
||||
i = g.pid_rate_yaw.get_integrator(); // Locked Integrator due to PID saturation on previous cycle |
||||
} else { |
||||
i = g.pid_rate_yaw.get_i(rate_error, G_Dt); |
||||
} |
||||
|
||||
d = g.pid_rate_yaw.get_d(rate_error, G_Dt); |
||||
|
||||
ff = g.heli_yaw_ff*target_rate; |
||||
|
||||
output = p + i + d + ff; |
||||
|
||||
if (labs(output) > 4500){ |
||||
output = constrain_int32(output, -4500, 4500); // constrain output |
||||
pid_saturated = true; // freeze integrator next cycle |
||||
} else { |
||||
pid_saturated = false; // unfreeze integrator |
||||
} |
||||
|
||||
#if LOGGING_ENABLED == ENABLED |
||||
// log output if PID loggins is on and we are tuning the yaw |
||||
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_YAW_RATE_KP || g.radio_tuning == CH6_YAW_RATE_KD) ) { |
||||
pid_log_counter++; |
||||
if( pid_log_counter >= 10 ) { // (update rate / desired output rate) = (100hz / 10hz) = 10 |
||||
pid_log_counter = 0; |
||||
Log_Write_PID(CH6_YAW_RATE_KP, rate_error, p, i, d, output, tuning_value); |
||||
} |
||||
} |
||||
#endif |
||||
|
||||
return output; // output control |
||||
} |
||||
|
||||
#endif // FRAME_CONFIG == TRAD_HELI |
Loading…
Reference in new issue