Guglielmo
6 years ago
committed by
Peter Barker
4 changed files with 970 additions and 0 deletions
@ -0,0 +1,201 @@
@@ -0,0 +1,201 @@
|
||||
#!/usr/bin/env python |
||||
# -*- coding: utf-8 -*- |
||||
|
||||
""" ArduPilot BiquadFilter |
||||
|
||||
This program is free software: you can redistribute it and/or modify it under |
||||
the terms of the GNU General Public License as published by the Free Software |
||||
Foundation, either version 3 of the License, or (at your option) any later |
||||
version. |
||||
This program is distributed in the hope that it will be useful, but WITHOUT |
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
||||
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
||||
You should have received a copy of the GNU General Public License along with |
||||
this program. If not, see <http://www.gnu.org/licenses/>. |
||||
""" |
||||
|
||||
__author__ = "Guglielmo Cassinelli" |
||||
__contact__ = "gdguglie@gmail.com" |
||||
|
||||
import numpy as np |
||||
|
||||
|
||||
class DigitalLPF: |
||||
def __init__(self, cutoff_freq, sample_freq): |
||||
self._cutoff_freq = cutoff_freq |
||||
self._sample_freq = sample_freq |
||||
|
||||
self._output = 0 |
||||
|
||||
self.compute_alpha() |
||||
|
||||
def compute_alpha(self): |
||||
|
||||
if self._cutoff_freq <= 0 or self._sample_freq <= 0: |
||||
self.alpha = 1. |
||||
else: |
||||
dt = 1. / self._sample_freq |
||||
rc = 1. / (np.pi * 2 * self._cutoff_freq) |
||||
a = dt / (dt + rc) |
||||
self.alpha = np.clip(a, 0, 1) |
||||
|
||||
def apply(self, sample): |
||||
self._output += (sample - self._output) * self.alpha |
||||
return self._output |
||||
|
||||
|
||||
class BiquadFilterType: |
||||
LPF = 0 |
||||
PEAK = 1 |
||||
NOTCH = 2 |
||||
|
||||
|
||||
class BiquadFilter: |
||||
|
||||
def __init__(self, center_freq, sample_freq, type=BiquadFilterType.LPF, attenuation=10, bandwidth=15): |
||||
self._center_freq = int(center_freq) |
||||
self._attenuation_db = int(attenuation) # used only by notch, use setter |
||||
self._bandwidth_hz = int(bandwidth) # used only by notch, use setter |
||||
|
||||
self._sample_freq = sample_freq |
||||
self._type = type |
||||
|
||||
self._delayed_sample1 = 0 |
||||
self._delayed_sample2 = 0 |
||||
self._delayed_output1 = 0 |
||||
self._delayed_output2 = 0 |
||||
|
||||
self.b0 = 0. |
||||
self.b1 = 0. |
||||
self.b2 = 0. |
||||
self.a0 = 1 |
||||
self.a1 = 0. |
||||
self.a2 = 0. |
||||
|
||||
self.compute_params() |
||||
|
||||
def get_sample_freq(self): |
||||
return self._sample_freq |
||||
|
||||
def reset(self): |
||||
self._delayed_sample1 = 0 |
||||
self._delayed_sample2 = 0 |
||||
self._delayed_output1 = 0 |
||||
self._delayed_output2 = 0 |
||||
|
||||
def get_type(self): |
||||
return self._type |
||||
|
||||
def set_attenuation(self, attenuation_db): |
||||
self._attenuation_db = int(attenuation_db) |
||||
self.compute_params() |
||||
|
||||
def set_bandwidth(self, bandwidth_hz): |
||||
self._bandwidth_hz = int(bandwidth_hz) |
||||
self.compute_params() |
||||
|
||||
def set_center_freq(self, cutoff_freq): |
||||
self._center_freq = int(cutoff_freq) |
||||
self.compute_params() |
||||
|
||||
def compute_params(self): |
||||
|
||||
omega = 2 * np.pi * self._center_freq / self._sample_freq |
||||
sin_om = np.sin(omega) |
||||
cos_om = np.cos(omega) |
||||
|
||||
if self._type == BiquadFilterType.LPF: |
||||
|
||||
if self._center_freq > 0: |
||||
Q = 1 / np.sqrt(2) |
||||
alpha = sin_om / (2 * Q) |
||||
|
||||
self.b0 = (1 - cos_om) / 2 |
||||
self.b1 = 1 - cos_om |
||||
self.b2 = self.b0 |
||||
self.a0 = 1 + alpha |
||||
self.a1 = -2 * cos_om |
||||
self.a2 = 1 - alpha |
||||
|
||||
elif self._type == BiquadFilterType.PEAK: |
||||
|
||||
A = 10 ** (-self._attenuation_db / 40) |
||||
|
||||
# why not the formula below? It prevents a division by 0 when bandwidth = 2*frequency |
||||
octaves = np.log2(self._center_freq / (self._center_freq - self._bandwidth_hz / 2)) * 2 |
||||
Q = np.sqrt(2 ** octaves) / (2 ** octaves - 1) |
||||
|
||||
# Q = self._center_freq / self._bandwidth_hz |
||||
|
||||
alpha = sin_om / (2 * Q / A) |
||||
|
||||
self.b0 = 1.0 + alpha * A |
||||
self.b1 = -2.0 * cos_om |
||||
self.b2 = 1.0 - alpha * A |
||||
self.a0 = 1.0 + alpha / A |
||||
self.a1 = -2.0 * cos_om |
||||
self.a2 = 1.0 - alpha / A |
||||
|
||||
elif self._type == BiquadFilterType.NOTCH: |
||||
alpha = sin_om * np.sinh(np.log(2) / 2 * self._bandwidth_hz * omega * sin_om) |
||||
|
||||
self.b0 = 1 |
||||
self.b1 = -2 * cos_om |
||||
self.b2 = self.b0 |
||||
self.a0 = 1 + alpha |
||||
self.a1 = -2 * cos_om |
||||
self.a2 = 1 - alpha |
||||
|
||||
self.b0 /= self.a0 |
||||
self.b1 /= self.a0 |
||||
self.b2 /= self.a0 |
||||
self.a1 /= self.a0 |
||||
self.a2 /= self.a0 |
||||
|
||||
def apply(self, sample): |
||||
|
||||
if self._center_freq <= 0: |
||||
return sample |
||||
|
||||
output = (self.b0 * sample + self.b1 * self._delayed_sample1 + self.b2 * self._delayed_sample2 - self.a1 |
||||
* self._delayed_output1 - self.a2 * self._delayed_output2) |
||||
|
||||
self._delayed_sample2 = self._delayed_sample1 |
||||
self._delayed_sample1 = sample |
||||
|
||||
self._delayed_output2 = self._delayed_output1 |
||||
self._delayed_output1 = output |
||||
|
||||
return output |
||||
|
||||
def get_params(self): |
||||
|
||||
return { |
||||
"a1": self.a1, |
||||
"a2": self.a2, |
||||
"b0": self.b0, |
||||
"b1": self.b1, |
||||
"b2": self.b2, |
||||
} |
||||
|
||||
def get_center_freq(self): |
||||
return self._center_freq |
||||
|
||||
def get_attenuation(self): |
||||
return self._attenuation_db |
||||
|
||||
def get_bandwidth(self): |
||||
return self._bandwidth_hz |
||||
|
||||
def freq_response(self, f): |
||||
if self._center_freq <= 0: |
||||
return 1 |
||||
|
||||
phi = (np.sin(np.pi * f * 2 / (2 * self._sample_freq))) ** 2 |
||||
r = (((self.b0 + self.b1 + self.b2) ** 2 - 4 * (self.b0 * self.b1 + 4 * self.b0 * self.b2 + self.b1 * self.b2) |
||||
* phi + 16 * self.b0 * self.b2 * phi * phi) |
||||
/ ((1 + self.a1 + self.a2) ** 2 - 4 * (self.a1 + 4 * self.a2 + self.a1 * self.a2) * phi + 16 |
||||
* self.a2 * phi * phi)) |
||||
# if r < 0: |
||||
# r = 0 |
||||
return r ** .5 |
@ -0,0 +1,468 @@
@@ -0,0 +1,468 @@
|
||||
#!/usr/bin/env python |
||||
# -*- coding: utf-8 -*- |
||||
|
||||
""" ArduPilot IMU Filter Test Class |
||||
|
||||
This program is free software: you can redistribute it and/or modify it under |
||||
the terms of the GNU General Public License as published by the Free Software |
||||
Foundation, either version 3 of the License, or (at your option) any later |
||||
version. |
||||
This program is distributed in the hope that it will be useful, but WITHOUT |
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
||||
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
||||
You should have received a copy of the GNU General Public License along with |
||||
this program. If not, see <http://www.gnu.org/licenses/>. |
||||
""" |
||||
|
||||
__author__ = "Guglielmo Cassinelli" |
||||
__contact__ = "gdguglie@gmail.com" |
||||
|
||||
import numpy as np |
||||
import matplotlib.pyplot as plt |
||||
from matplotlib.widgets import Slider |
||||
from matplotlib.animation import FuncAnimation |
||||
from scipy import signal |
||||
from BiquadFilter import BiquadFilterType, BiquadFilter |
||||
|
||||
sliders = [] # matplotlib sliders must be global |
||||
anim = None # matplotlib animations must be global |
||||
|
||||
|
||||
class FilterTest: |
||||
FILTER_DEBOUNCE = 10 # ms |
||||
|
||||
FILT_SHAPE_DT_FACTOR = 1 # increase to reduce filter shape size |
||||
|
||||
FFT_N = 512 |
||||
|
||||
filters = {} |
||||
|
||||
def __init__(self, acc_t, acc_x, acc_y, acc_z, gyr_t, gyr_x, gyr_y, gyr_z, acc_freq, gyr_freq, |
||||
acc_lpf_cutoff, gyr_lpf_cutoff, |
||||
acc_notch_freq, acc_notch_att, acc_notch_band, |
||||
gyr_notch_freq, gyr_notch_att, gyr_notch_band, |
||||
log_name, accel_notch=False, second_notch=False): |
||||
|
||||
self.filter_color_map = plt.get_cmap('summer') |
||||
|
||||
self.filters["acc"] = [ |
||||
BiquadFilter(acc_lpf_cutoff, acc_freq) |
||||
] |
||||
|
||||
if accel_notch: |
||||
self.filters["acc"].append( |
||||
BiquadFilter(acc_notch_freq, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band), |
||||
) |
||||
|
||||
self.filters["gyr"] = [ |
||||
BiquadFilter(gyr_lpf_cutoff, gyr_freq), |
||||
BiquadFilter(gyr_notch_freq, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band) |
||||
] |
||||
|
||||
if second_notch: |
||||
self.filters["acc"].append( |
||||
BiquadFilter(acc_notch_freq * 2, acc_freq, BiquadFilterType.PEAK, acc_notch_att, acc_notch_band) |
||||
) |
||||
self.filters["gyr"].append( |
||||
BiquadFilter(gyr_notch_freq * 2, gyr_freq, BiquadFilterType.PEAK, gyr_notch_att, gyr_notch_band) |
||||
) |
||||
|
||||
self.ACC_t = acc_t |
||||
self.ACC_x = acc_x |
||||
self.ACC_y = acc_y |
||||
self.ACC_z = acc_z |
||||
|
||||
self.GYR_t = gyr_t |
||||
self.GYR_x = gyr_x |
||||
self.GYR_y = gyr_y |
||||
self.GYR_z = gyr_z |
||||
|
||||
self.GYR_freq = gyr_freq |
||||
self.ACC_freq = acc_freq |
||||
|
||||
self.gyr_dt = 1. / gyr_freq |
||||
self.acc_dt = 1. / acc_freq |
||||
|
||||
self.timer = None |
||||
|
||||
self.updated_artists = [] |
||||
|
||||
# INIT |
||||
self.init_plot(log_name) |
||||
|
||||
def test_acc_filters(self): |
||||
filt_xs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_x) |
||||
filt_ys = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_y) |
||||
filt_zs = self.test_filters(self.filters["acc"], self.ACC_t, self.ACC_z) |
||||
return filt_xs, filt_ys, filt_zs |
||||
|
||||
def test_gyr_filters(self): |
||||
filt_xs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_x) |
||||
filt_ys = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_y) |
||||
filt_zs = self.test_filters(self.filters["gyr"], self.GYR_t, self.GYR_z) |
||||
return filt_xs, filt_ys, filt_zs |
||||
|
||||
def test_filters(self, filters, Ts, Xs): |
||||
for f in filters: |
||||
f.reset() |
||||
|
||||
x_filtered = [] |
||||
|
||||
for i, t in enumerate(Ts): |
||||
x = Xs[i] |
||||
|
||||
x_f = x |
||||
for filt in filters: |
||||
x_f = filt.apply(x_f) |
||||
|
||||
x_filtered.append(x_f) |
||||
|
||||
return x_filtered |
||||
|
||||
def get_filter_shape(self, filter): |
||||
samples = int(filter.get_sample_freq()) # resolution of filter shape based on sample rate |
||||
x_space = np.linspace(0.0, samples // 2, samples // int(2 * self.FILT_SHAPE_DT_FACTOR)) |
||||
return x_space, filter.freq_response(x_space) |
||||
|
||||
def init_signal_plot(self, ax, Ts, Xs, Ys, Zs, Xs_filtered, Ys_filtered, Zs_filtered, label): |
||||
ax.plot(Ts, Xs, linewidth=1, label="{}X".format(label), alpha=0.5) |
||||
ax.plot(Ts, Ys, linewidth=1, label="{}Y".format(label), alpha=0.5) |
||||
ax.plot(Ts, Zs, linewidth=1, label="{}Z".format(label), alpha=0.5) |
||||
filtered_x_ax, = ax.plot(Ts, Xs_filtered, linewidth=1, label="{}X filtered".format(label), alpha=1) |
||||
filtered_y_ax, = ax.plot(Ts, Ys_filtered, linewidth=1, label="{}Y filtered".format(label), alpha=1) |
||||
filtered_z_ax, = ax.plot(Ts, Zs_filtered, linewidth=1, label="{}Z filtered".format(label), alpha=1) |
||||
ax.legend(prop={'size': 8}) |
||||
return filtered_x_ax, filtered_y_ax, filtered_z_ax |
||||
|
||||
def fft_to_xdata(self, fft): |
||||
n = len(fft) |
||||
norm_factor = 2. / n |
||||
return norm_factor * np.abs(fft[:n // 2]) |
||||
|
||||
def plot_fft(self, ax, x, fft, label): |
||||
fft_ax, = ax.plot(x, self.fft_to_xdata(fft), label=label) |
||||
return fft_ax |
||||
|
||||
def init_fft(self, ax, Ts, Xs, Ys, Zs, sample_rate, dt, Xs_filtered, Ys_filtered, Zs_filtered, label): |
||||
|
||||
_freqs_raw_x, _times_raw_x, _stft_raw_x = signal.stft(Xs, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
raw_fft_x = np.average(np.abs(_stft_raw_x), axis=1) |
||||
|
||||
_freqs_raw_y, _times_raw_y, _stft_raw_y = signal.stft(Ys, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
raw_fft_y = np.average(np.abs(_stft_raw_y), axis=1) |
||||
|
||||
_freqs_raw_z, _times_raw_z, _stft_raw_z = signal.stft(Zs, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
raw_fft_z = np.average(np.abs(_stft_raw_z), axis=1) |
||||
|
||||
_freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_x = np.average(np.abs(_stft_x), axis=1) |
||||
|
||||
_freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_y = np.average(np.abs(_stft_y), axis=1) |
||||
|
||||
_freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_z = np.average(np.abs(_stft_z), axis=1) |
||||
|
||||
ax.plot(_freqs_raw_x, raw_fft_x, alpha=0.5, linewidth=1, label="{}x FFT".format(label)) |
||||
ax.plot(_freqs_raw_y, raw_fft_y, alpha=0.5, linewidth=1, label="{}y FFT".format(label)) |
||||
ax.plot(_freqs_raw_z, raw_fft_z, alpha=0.5, linewidth=1, label="{}z FFT".format(label)) |
||||
|
||||
filtered_fft_ax_x, = ax.plot(_freqs_x, filtered_fft_x, label="filt. {}x FFT".format(label)) |
||||
filtered_fft_ax_y, = ax.plot(_freqs_y, filtered_fft_y, label="filt. {}y FFT".format(label)) |
||||
filtered_fft_ax_z, = ax.plot(_freqs_z, filtered_fft_z, label="filt. {}z FFT".format(label)) |
||||
|
||||
# FFT |
||||
# samples = len(Ts) |
||||
# x_space = np.linspace(0.0, 1.0 / (2.0 * dt), samples // 2) |
||||
# filtered_data = np.hanning(len(Xs_filtered)) * Xs_filtered |
||||
# raw_fft = np.fft.fft(np.hanning(len(Xs)) * Xs) |
||||
# filtered_fft = np.fft.fft(filtered_data, n=self.FFT_N) |
||||
# self.plot_fft(ax, x_space, raw_fft, "{} FFT".format(label)) |
||||
# fft_freq = np.fft.fftfreq(self.FFT_N, d=dt) |
||||
# x_space |
||||
# filtered_fft_ax = self.plot_fft(ax, fft_freq[:self.FFT_N // 2], filtered_fft, "filtered {} FFT".format(label)) |
||||
|
||||
ax.set_xlabel("frequency") |
||||
# ax.set_xscale("log") |
||||
# ax.xaxis.set_major_formatter(ScalarFormatter()) |
||||
ax.legend(prop={'size': 8}) |
||||
|
||||
return filtered_fft_ax_x, filtered_fft_ax_y, filtered_fft_ax_z |
||||
|
||||
def init_filter_shape(self, ax, filter, color): |
||||
center = filter.get_center_freq() |
||||
x_space, lpf_shape = self.get_filter_shape(filter) |
||||
|
||||
plot_slpf_shape, = ax.plot(x_space, lpf_shape, c=color, label="LPF shape") |
||||
xvline_lpf_cutoff = ax.axvline(x=center, linestyle="--", c=color) # LPF cutoff freq |
||||
|
||||
return plot_slpf_shape, xvline_lpf_cutoff |
||||
|
||||
def create_slider(self, name, rect, max, value, color, callback): |
||||
global sliders |
||||
ax_slider = self.fig.add_axes(rect, facecolor='lightgoldenrodyellow') |
||||
slider = Slider(ax_slider, name, 0, max, valinit=np.sqrt(max * value), valstep=1, color=color) |
||||
slider.valtext.set_text(value) |
||||
|
||||
# slider.drawon = False |
||||
|
||||
def changed(val, cbk, max, slider): |
||||
# non linear slider to better control small values |
||||
val = int(val ** 2 / max) |
||||
slider.valtext.set_text(val) |
||||
cbk(val) |
||||
|
||||
slider.on_changed(lambda val, cbk=callback, max=max, s=slider: changed(val, cbk, max, s)) |
||||
sliders.append(slider) |
||||
|
||||
def delay_update(self, update_cbk): |
||||
def _delayed_update(self, cbk): |
||||
self.timer.stop() |
||||
cbk() |
||||
|
||||
# delay actual filtering |
||||
if self.fig: |
||||
if self.timer: |
||||
self.timer.stop() |
||||
self.timer = self.fig.canvas.new_timer(interval=self.FILTER_DEBOUNCE) |
||||
self.timer.add_callback(lambda self=self: _delayed_update(self, update_cbk)) |
||||
self.timer.start() |
||||
|
||||
def update_filter_shape(self, filter, shape, center_line): |
||||
x_data, new_shape = self.get_filter_shape(filter) |
||||
|
||||
shape.set_ydata(new_shape) |
||||
center_line.set_xdata(filter.get_center_freq()) |
||||
|
||||
self.updated_artists.extend([ |
||||
shape, |
||||
center_line, |
||||
]) |
||||
|
||||
def update_signal_and_fft_plot(self, filters_key, time_list, sample_lists, signal_shapes, fft_shapes, shape, |
||||
center_line, sample_rate): |
||||
# print("update_signal_and_fft_plot", self.filters[filters_key][0].get_center_freq()) |
||||
Xs, Ys, Zs = sample_lists |
||||
signal_shape_x, signal_shape_y, signal_shape_z = signal_shapes |
||||
fft_shape_x, fft_shape_y, fft_shape_z = fft_shapes |
||||
|
||||
Xs_filtered = self.test_filters(self.filters[filters_key], time_list, Xs) |
||||
Ys_filtered = self.test_filters(self.filters[filters_key], time_list, Ys) |
||||
Zs_filtered = self.test_filters(self.filters[filters_key], time_list, Zs) |
||||
|
||||
signal_shape_x.set_ydata(Xs_filtered) |
||||
signal_shape_y.set_ydata(Ys_filtered) |
||||
signal_shape_z.set_ydata(Zs_filtered) |
||||
|
||||
self.updated_artists.extend([signal_shape_x, signal_shape_y, signal_shape_z]) |
||||
|
||||
_freqs_x, _times_x, _stft_x = signal.stft(Xs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_x = np.average(np.abs(_stft_x), axis=1) |
||||
|
||||
_freqs_y, _times_y, _stft_y = signal.stft(Ys_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_y = np.average(np.abs(_stft_y), axis=1) |
||||
|
||||
_freqs_z, _times_z, _stft_z = signal.stft(Zs_filtered, sample_rate, window='hann', nperseg=self.FFT_N) |
||||
filtered_fft_z = np.average(np.abs(_stft_z), axis=1) |
||||
|
||||
fft_shape_x.set_ydata(filtered_fft_x) |
||||
fft_shape_y.set_ydata(filtered_fft_y) |
||||
fft_shape_z.set_ydata(filtered_fft_z) |
||||
|
||||
self.updated_artists.extend([ |
||||
fft_shape_x, fft_shape_y, fft_shape_z, |
||||
shape, center_line, |
||||
]) |
||||
|
||||
# self.fig.canvas.draw() |
||||
|
||||
def animation_update(self): |
||||
updated_artists = self.updated_artists.copy() |
||||
|
||||
# if updated_artists: |
||||
# print("animation update") |
||||
|
||||
# reset updated artists |
||||
self.updated_artists = [] |
||||
|
||||
return updated_artists |
||||
|
||||
def update_filter(self, val, cbk, filter, shape, center_line, filters_key, time_list, sample_lists, signal_shapes, |
||||
fft_shapes): |
||||
# this callback sets the parameter controlled by the slider |
||||
cbk(val) |
||||
# print("filter update",val) |
||||
# update filter shape and delay fft update |
||||
self.update_filter_shape(filter, shape, center_line) |
||||
sample_freq = filter.get_sample_freq() |
||||
self.delay_update( |
||||
lambda self=self: self.update_signal_and_fft_plot(filters_key, time_list, sample_lists, signal_shapes, |
||||
fft_shapes, shape, center_line, sample_freq)) |
||||
|
||||
def create_filter_control(self, name, filter, rect, max, default, shape, center_line, cbk, filters_key, time_list, |
||||
sample_lists, signal_shapes, fft_shapes, filt_color): |
||||
self.create_slider(name, rect, max, default, filt_color, lambda val, cbk=cbk, self=self, filter=filter, shape=shape, |
||||
center_line=center_line, filters_key=filters_key, |
||||
time_list=time_list, sample_list=sample_lists, |
||||
signal_shape=signal_shapes, fft_shape=fft_shapes: |
||||
self.update_filter(val, cbk, filter, shape, center_line, filters_key, |
||||
time_list, sample_list, signal_shape, fft_shape)) |
||||
|
||||
def create_controls(self, filters_key, base_rect, padding, ax_fft, time_list, sample_lists, signal_shapes, |
||||
fft_shapes): |
||||
ax_filter = ax_fft.twinx() |
||||
ax_filter.set_navigate(False) |
||||
ax_filter.set_yticks([]) |
||||
|
||||
num_filters = len(self.filters[filters_key]) |
||||
|
||||
for i, filter in enumerate(self.filters[filters_key]): |
||||
filt_type = filter.get_type() |
||||
filt_color = self.filter_color_map(i / num_filters) |
||||
filt_shape, filt_cutoff = self.init_filter_shape(ax_filter, filter, filt_color) |
||||
|
||||
if filt_type == BiquadFilterType.PEAK: |
||||
name = "Notch" |
||||
else: |
||||
name = "LPF" |
||||
|
||||
# control for center freq is common to all filters |
||||
self.create_filter_control("{} freq".format(name), filter, base_rect, 500, filter.get_center_freq(), |
||||
filt_shape, filt_cutoff, |
||||
lambda val, filter=filter: filter.set_center_freq(val), |
||||
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) |
||||
# move down of control height + padding |
||||
base_rect[1] -= (base_rect[3] + padding) |
||||
|
||||
if filt_type == BiquadFilterType.PEAK: |
||||
self.create_filter_control("{} att (db)".format(name), filter, base_rect, 100, filter.get_attenuation(), |
||||
filt_shape, filt_cutoff, |
||||
lambda val, filter=filter: filter.set_attenuation(val), |
||||
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) |
||||
base_rect[1] -= (base_rect[3] + padding) |
||||
self.create_filter_control("{} band".format(name), filter, base_rect, 300, filter.get_bandwidth(), |
||||
filt_shape, filt_cutoff, |
||||
lambda val, filter=filter: filter.set_bandwidth(val), |
||||
filters_key, time_list, sample_lists, signal_shapes, fft_shapes, filt_color) |
||||
base_rect[1] -= (base_rect[3] + padding) |
||||
|
||||
def create_spectrogram(self, data, name, sample_rate): |
||||
freqs, times, Sx = signal.spectrogram(np.array(data), fs=sample_rate, window='hanning', |
||||
nperseg=self.FFT_N, noverlap=self.FFT_N - self.FFT_N // 10, |
||||
detrend=False, scaling='spectrum') |
||||
|
||||
f, ax = plt.subplots(figsize=(4.8, 2.4)) |
||||
ax.pcolormesh(times, freqs, 10 * np.log10(Sx), cmap='viridis') |
||||
ax.set_title(name) |
||||
ax.set_ylabel('Frequency (Hz)') |
||||
ax.set_xlabel('Time (s)') |
||||
|
||||
def init_plot(self, log_name): |
||||
|
||||
self.fig = plt.figure(figsize=(14, 9)) |
||||
self.fig.canvas.set_window_title("ArduPilot Filter Test Tool - {}".format(log_name)) |
||||
self.fig.canvas.draw() |
||||
|
||||
rows = 2 |
||||
cols = 3 |
||||
raw_acc_index = 1 |
||||
fft_acc_index = raw_acc_index + 1 |
||||
raw_gyr_index = cols + 1 |
||||
fft_gyr_index = raw_gyr_index + 1 |
||||
|
||||
# signal |
||||
self.ax_acc = self.fig.add_subplot(rows, cols, raw_acc_index) |
||||
self.ax_gyr = self.fig.add_subplot(rows, cols, raw_gyr_index, sharex=self.ax_acc) |
||||
|
||||
accx_filtered, accy_filtered, accz_filtered = self.test_acc_filters() |
||||
self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz = self.init_signal_plot(self.ax_acc, |
||||
self.ACC_t, |
||||
self.ACC_x, |
||||
self.ACC_y, |
||||
self.ACC_z, |
||||
accx_filtered, |
||||
accy_filtered, |
||||
accz_filtered, |
||||
"AccX") |
||||
|
||||
gyrx_filtered, gyry_filtered, gyrz_filtered = self.test_gyr_filters() |
||||
self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz = self.init_signal_plot(self.ax_gyr, |
||||
self.GYR_t, |
||||
self.GYR_x, |
||||
self.GYR_y, |
||||
self.GYR_z, |
||||
gyrx_filtered, |
||||
gyry_filtered, |
||||
gyrz_filtered, |
||||
"GyrX") |
||||
|
||||
# FFT |
||||
self.ax_acc_fft = self.fig.add_subplot(rows, cols, fft_acc_index) |
||||
self.ax_gyr_fft = self.fig.add_subplot(rows, cols, fft_gyr_index) |
||||
|
||||
self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z = self.init_fft( |
||||
self.ax_acc_fft, self.ACC_t, self.ACC_x, self.ACC_y, self.ACC_z, self.ACC_freq, self.acc_dt, accx_filtered, |
||||
accy_filtered, accz_filtered, "AccX") |
||||
self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z = self.init_fft( |
||||
self.ax_gyr_fft, self.GYR_t, self.GYR_x, self.GYR_y, self.GYR_z, self.GYR_freq, self.gyr_dt, gyrx_filtered, |
||||
gyry_filtered, gyrz_filtered, "GyrX") |
||||
|
||||
self.fig.tight_layout() |
||||
|
||||
# TODO add y z |
||||
self.create_controls("acc", [0.75, 0.95, 0.2, 0.02], 0.01, self.ax_acc_fft, self.ACC_t, |
||||
(self.ACC_x, self.ACC_y, self.ACC_z), |
||||
(self.ax_filtered_accx, self.ax_filtered_accy, self.ax_filtered_accz), |
||||
(self.acc_filtered_fft_ax_x, self.acc_filtered_fft_ax_y, self.acc_filtered_fft_ax_z)) |
||||
self.create_controls("gyr", [0.75, 0.45, 0.2, 0.02], 0.01, self.ax_gyr_fft, self.GYR_t, |
||||
(self.GYR_x, self.GYR_y, self.GYR_z), |
||||
(self.ax_filtered_gyrx, self.ax_filtered_gyry, self.ax_filtered_gyrz), |
||||
(self.gyr_filtered_fft_ax_x, self.gyr_filtered_fft_ax_y, self.gyr_filtered_fft_ax_z)) |
||||
|
||||
# setup animation for continuous update |
||||
global anim |
||||
anim = FuncAnimation(self.fig, lambda frame, self=self: self.animation_update(), interval=1, blit=False) |
||||
|
||||
# Work in progress here... |
||||
# self.create_spectrogram(self.GYR_x, "GyrX", self.GYR_freq) |
||||
# self.create_spectrogram(gyrx_filtered, "GyrX filtered", self.GYR_freq) |
||||
# self.create_spectrogram(self.ACC_x, "AccX", self.ACC_freq) |
||||
# self.create_spectrogram(accx_filtered, "AccX filtered", self.ACC_freq) |
||||
|
||||
plt.show() |
||||
|
||||
self.print_filter_param_info() |
||||
|
||||
def print_filter_param_info(self): |
||||
if len(self.filters["acc"]) > 2 or len(self.filters["gyr"]) > 2: |
||||
print("Testing too many filters unsupported from firmware, cannot calculate parameters to set them") |
||||
return |
||||
|
||||
print("To have the last filter settings in the graphs set the following parameters:\n") |
||||
|
||||
for f in self.filters["acc"]: |
||||
filt_type = f.get_type() |
||||
|
||||
if filt_type == BiquadFilterType.PEAK: # NOTCH |
||||
print("INS_NOTCA_ENABLE,", 1) |
||||
print("INS_NOTCA_FREQ,", f.get_center_freq()) |
||||
print("INS_NOTCA_BW,", f.get_bandwidth()) |
||||
print("INS_NOTCA_ATT,", f.get_attenuation()) |
||||
else: # LPF |
||||
print("INS_ACCEL_FILTER,", f.get_center_freq()) |
||||
|
||||
for f in self.filters["gyr"]: |
||||
filt_type = f.get_type() |
||||
|
||||
if filt_type == BiquadFilterType.PEAK: # NOTCH |
||||
print("INS_NOTCH_ENABLE,", 1) |
||||
print("INS_NOTCH_FREQ,", f.get_center_freq()) |
||||
print("INS_NOTCH_BW,", f.get_bandwidth()) |
||||
print("INS_NOTCH_ATT,", f.get_attenuation()) |
||||
else: # LPF |
||||
print("INS_GYRO_FILTER,", f.get_center_freq()) |
||||
|
||||
print("\n+---------+") |
||||
print("| WARNING |") |
||||
print("+---------+") |
||||
print("Always check the onboard FFT to setup filters, this tool only simulate effects of filtering.") |
@ -0,0 +1,32 @@
@@ -0,0 +1,32 @@
|
||||
# ArduPilot IMU Filter Test Tool |
||||
|
||||
**Warning: always check the onboard FFT to setup filters, this tool only simulate effects of filtering.** |
||||
|
||||
This is a tool to simulate IMU filtering on a raw IMU log. |
||||
To run it: |
||||
|
||||
```bash |
||||
python run_filter_test.py |
||||
``` |
||||
|
||||
This will open a file chooser dialog to select a log file. |
||||
|
||||
|
||||
Log file can also be specified from command line |
||||
|
||||
```bash |
||||
python run_filter_test.py logfile.bin |
||||
``` |
||||
|
||||
To choose a smaller section of the log begin and/or end time can be specified in seconds. |
||||
E.g. to open only the log section between 60 and 120 seconds: |
||||
|
||||
```bash |
||||
python run_filter_test.py logfile.bin -b 60 -e 120 |
||||
``` |
||||
|
||||
More info here: |
||||
|
||||
https://discuss.ardupilot.org/t/imu-filter-tool/43633 |
||||
|
||||
|
@ -0,0 +1,269 @@
@@ -0,0 +1,269 @@
|
||||
#!/usr/bin/env python |
||||
# -*- coding: utf-8 -*- |
||||
|
||||
""" ArduPilot IMU Filter Test Tool |
||||
|
||||
This program is free software: you can redistribute it and/or modify it under |
||||
the terms of the GNU General Public License as published by the Free Software |
||||
Foundation, either version 3 of the License, or (at your option) any later |
||||
version. |
||||
This program is distributed in the hope that it will be useful, but WITHOUT |
||||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
||||
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
||||
You should have received a copy of the GNU General Public License along with |
||||
this program. If not, see <http://www.gnu.org/licenses/>. |
||||
""" |
||||
|
||||
__author__ = "Guglielmo Cassinelli" |
||||
__contact__ = "gdguglie@gmail.com" |
||||
|
||||
try: # Python 3.x |
||||
from tkinter import Tk |
||||
from tkinter.filedialog import askopenfilename |
||||
except ImportError: # Python 2.x |
||||
from Tkinter import Tk |
||||
from tkFileDialog import askopenfilename |
||||
|
||||
import argparse |
||||
import ntpath |
||||
import numpy as np |
||||
from pymavlink import mavutil |
||||
|
||||
|
||||
""" |
||||
read command line parameters |
||||
""" |
||||
|
||||
parser = argparse.ArgumentParser(description='ArduPilot IMU Filter Tester Tool. Input one log file from ') |
||||
parser.add_argument('file', nargs='?', default=None, help='bin log file containing raw IMU logs') |
||||
parser.add_argument('--begin-time', '-b', type=int, default=0, help='start from second') |
||||
parser.add_argument('--end-time', '-e', type=int, default=-1, help='end to second') |
||||
|
||||
args = parser.parse_args() |
||||
|
||||
log_file = args.file |
||||
begin_time = args.begin_time |
||||
end_time = args.end_time |
||||
|
||||
# if log not input by command line |
||||
if not log_file: |
||||
# GUI log file chooser |
||||
root = Tk() |
||||
root.withdraw() |
||||
root.focus_force() |
||||
log_file = askopenfilename(title="Select log file", filetypes=(("log files", ".bin .log"), ("all files", "*.*"))) |
||||
root.update() |
||||
root.destroy() |
||||
|
||||
if log_file is None or log_file == "": |
||||
print("No log file to open") |
||||
quit() |
||||
|
||||
log_name = ntpath.basename(log_file) |
||||
|
||||
""" |
||||
default settings |
||||
""" |
||||
POST_FILTER_LOGGING_BIT = 2 ** 1 |
||||
|
||||
RAW_IMU_LOG_BIT = 2 ** 19 |
||||
|
||||
PREVENT_POST_FILTER_LOGS = False |
||||
|
||||
PARAMS_TO_CHECK = [ |
||||
"INS_LOG_BAT_OPT", "INS_GYRO_FILTER", "INS_ACCEL_FILTER", |
||||
"INS_NOTCH_ENABLE", "INS_NOTCH_FREQ", "INS_NOTCH_BW", "INS_NOTCH_ATT", |
||||
"INS_NOTCA_ENABLE", "INS_NOTCA_FREQ", "INS_NOTCA_BW", "INS_NOTCA_ATT", |
||||
"LOG_BITMASK" |
||||
] |
||||
|
||||
DEFAULT_ACC_FILTER = 80 # hz |
||||
DEFAULT_GYR_FILTER = 80 # hz |
||||
|
||||
DEFAULT_ACC_NOTCH_FREQ = 150 # hz |
||||
DEFAULT_ACC_NOTCH_ATTENUATION = 30 # db |
||||
DEFAULT_ACC_NOTCH_BANDWIDTH = 100 # hz |
||||
|
||||
DEFAULT_GYR_NOTCH_FREQ = 145 |
||||
DEFAULT_GYR_NOTCH_ATTENUATION = 30 # db |
||||
DEFAULT_GYR_NOTCH_BANDWIDTH = 100 # hz |
||||
|
||||
ACCEL_NOTCH_FILTER = True |
||||
|
||||
""" |
||||
load LOG |
||||
""" |
||||
print("Loading %s...\n" % log_name) |
||||
|
||||
mlog = mavutil.mavlink_connection(log_file) |
||||
|
||||
log_start_time = 0 |
||||
log_end_time = 0 |
||||
|
||||
ACC_t = [] |
||||
ACC_x = [] |
||||
ACC_y = [] |
||||
ACC_z = [] |
||||
|
||||
GYR_t = [] |
||||
GYR_x = [] |
||||
GYR_y = [] |
||||
GYR_z = [] |
||||
|
||||
params = {} |
||||
|
||||
while True: |
||||
m = mlog._parse_next() |
||||
""" |
||||
@type m DFMessage |
||||
""" |
||||
|
||||
if m is None: |
||||
break |
||||
|
||||
if m.fmt.name == "PARM": |
||||
# check param value |
||||
|
||||
if m.Name in PARAMS_TO_CHECK: |
||||
print(m.Name, ", ", m.Value) |
||||
params[m.Name] = m.Value |
||||
|
||||
try: |
||||
m_time_sec = m.TimeUS / 1000000. |
||||
|
||||
if log_start_time == 0: |
||||
log_start_time = m_time_sec |
||||
|
||||
if m_time_sec < begin_time: |
||||
continue |
||||
|
||||
if end_time > 0 and m_time_sec > end_time: |
||||
continue |
||||
except AttributeError: |
||||
pass |
||||
|
||||
if m.fmt.name == "ACC1": |
||||
ACC_t.append(m_time_sec) |
||||
ACC_x.append(m.AccX) |
||||
ACC_y.append(m.AccY) |
||||
ACC_z.append(m.AccZ) |
||||
|
||||
elif m.fmt.name == "GYR1": |
||||
GYR_t.append(m_time_sec) |
||||
GYR_x.append(m.GyrX) |
||||
GYR_y.append(m.GyrY) |
||||
GYR_z.append(m.GyrZ) |
||||
|
||||
|
||||
def print_log_msg_stats(log_time_list, msg_name): |
||||
msg_count = len(log_time_list) |
||||
|
||||
if msg_count > 0: |
||||
msg_total_time = log_time_list[-1] - log_time_list[0] |
||||
msg_freq = msg_count / msg_total_time |
||||
else: |
||||
msg_total_time = 0 |
||||
msg_freq = 0 |
||||
|
||||
print("\n{} {} logs for a duration of {:.1f} secs".format(msg_count, msg_name, msg_total_time)) |
||||
print(msg_name + " frequency = {:.2f} hz".format(msg_freq)) |
||||
|
||||
return msg_freq |
||||
|
||||
|
||||
def get_mean_and_std(np_arr): |
||||
mean = np.mean(np_arr) |
||||
std = np.std(np_arr) |
||||
return mean, std |
||||
|
||||
|
||||
def print_mean_and_std(np_arr, name=""): |
||||
mean, std = get_mean_and_std(np_arr) |
||||
print("{} mean {:.3f} std {:.3f}".format(name, mean, std)) |
||||
|
||||
|
||||
def set_bit(number, bit_index, bit_value): |
||||
"""Set the index:th bit of v to 1 if x is truthy, else to 0, and return the new value.""" |
||||
mask = 1 << bit_index # Compute mask, an integer with just bit 'index' set. |
||||
number &= ~mask # Clear the bit indicated by the mask (if x is False) |
||||
if bit_value: |
||||
number |= mask # If x was True, set the bit indicated by the mask. |
||||
return number # Return the result, we're done. |
||||
|
||||
|
||||
ACC_freq = print_log_msg_stats(ACC_t, "ACC") |
||||
GYR_freq = print_log_msg_stats(GYR_t, "GYR") |
||||
|
||||
if not ACC_t or not GYR_t: |
||||
print("\nNo RAW IMU logs to analyze") |
||||
quit() |
||||
|
||||
if "INS_LOG_BAT_OPT" in params: |
||||
log_bat_opt = int(params["INS_LOG_BAT_OPT"]) |
||||
if log_bat_opt & POST_FILTER_LOGGING_BIT: |
||||
print("\nINS_LOG_BAT_OPT was set to {} which enables post filter logging," |
||||
"use pre filter logging to not sum multiple filter passes.".format(log_bat_opt)) |
||||
print("(set INS_LOG_BAT_OPT = {})".format(set_bit(log_bat_opt, 1, 0))) |
||||
|
||||
if PREVENT_POST_FILTER_LOGS: |
||||
quit() |
||||
else: |
||||
print("couldn't check ") |
||||
|
||||
if "LOG_BITMASK" in params: |
||||
log_bitmask = int(params["LOG_BITMASK"]) |
||||
if not log_bitmask & RAW_IMU_LOG_BIT: |
||||
print("\nWARNING: LOG_BITMASK was not set to enable RAW_IMU logging, please enable it to have best resolution") |
||||
else: |
||||
print("\nWARNING: Cannot read LOG_BITMASK, please ensure to have enabled RAW_IMU logging") |
||||
|
||||
# set filter parameters |
||||
print("Reading filter parameters to set initial filter values...") |
||||
|
||||
if "INS_GYRO_FILTER" in params: |
||||
DEFAULT_GYR_FILTER = params["INS_GYRO_FILTER"] |
||||
|
||||
if "INS_ACCEL_FILTER" in params: |
||||
DEFAULT_ACC_FILTER = params["INS_ACCEL_FILTER"] |
||||
|
||||
if "INS_NOTCH_ENABLE" in params: |
||||
if params["INS_NOTCH_ENABLE"] != 0: |
||||
if "INS_NOTCH_ATT" in params: |
||||
DEFAULT_GYR_NOTCH_ATTENUATION = params["INS_NOTCH_ATT"] |
||||
else: |
||||
DEFAULT_GYR_NOTCH_ATTENUATION = 0 |
||||
|
||||
if "INS_NOTCH_BW" in params: |
||||
DEFAULT_GYR_NOTCH_BANDWIDTH = params["INS_NOTCH_BW"] |
||||
|
||||
if "INS_NOTCH_FREQ" in params: |
||||
DEFAULT_GYR_NOTCH_FREQ = params["INS_NOTCH_FREQ"] |
||||
|
||||
if "INS_NOTCA_ENABLE" in params: |
||||
if params["INS_NOTCA_ENABLE"] != 0: |
||||
if "INS_NOTCA_ATT" in params: |
||||
DEFAULT_ACC_NOTCH_ATTENUATION = params["INS_NOTCA_ATT"] |
||||
else: |
||||
DEFAULT_ACC_NOTCH_ATTENUATION = 0 |
||||
|
||||
if "INS_NOTCA_BW" in params: |
||||
DEFAULT_ACC_NOTCH_BANDWIDTH = params["INS_NOTCA_BW"] |
||||
|
||||
if "INS_NOTCA_FREQ" in params: |
||||
DEFAULT_ACC_NOTCH_FREQ = params["INS_NOTCA_FREQ"] |
||||
|
||||
else: |
||||
print("The firmware that produced this log does not support notch filter on accelerometer") |
||||
ACCEL_NOTCH_FILTER = False |
||||
|
||||
|
||||
""" |
||||
run filter tet |
||||
""" |
||||
from FilterTest import FilterTest |
||||
|
||||
filter_test = FilterTest(ACC_t, ACC_x, ACC_y, ACC_z, GYR_t, GYR_x, GYR_y, GYR_z, ACC_freq, GYR_freq, |
||||
DEFAULT_ACC_FILTER, DEFAULT_GYR_FILTER, |
||||
DEFAULT_ACC_NOTCH_FREQ, DEFAULT_ACC_NOTCH_ATTENUATION, DEFAULT_ACC_NOTCH_BANDWIDTH, |
||||
DEFAULT_GYR_NOTCH_FREQ, DEFAULT_GYR_NOTCH_ATTENUATION, DEFAULT_GYR_NOTCH_BANDWIDTH, |
||||
log_name, ACCEL_NOTCH_FILTER) |
Loading…
Reference in new issue